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Abstract
Accurate diagnosis of cancer cells in early stages plays an important role in reliable therapeutic
strategies. In this study, we aimed to develop fluorescence-conjugated polymer carrying
nanocapsules (NCs) which is highly selective for myeloma cancer cells. To gain specific targeting
properties, NCs, XT5 molecules (a benzamide derivative) which shows high affinity properties
against protease-activated receptor-1 (PAR1), that overexpressed in myeloma cancer cells, was
used. For this purpose, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy
(polyethylene glycol)-2000]-carboxylic acid (DSPE-PEG2000-COOH) molecules, as a main
encapsulation material, was conjugated to XT5 molecules due to esterification reaction using N,N′-
dicyclohexylcarbodiimide as a coupling agent. The synthesized DSPE-PEG2000-COO-XT5 was
characterized by using FT-IR and 1H NMR spectroscopies and results indicated that XT5
molecules were successfully conjugated to DSPE-PEG2000-COOH. Poly(fluorene-alt-
benzothiadiazole) (PFBT) conjugated polymer (CP) was encapsulated with
DSPE-PEG2000-COO-XT5 due to dissolving in tetrahydrofuran and ultra-sonication in an aqueous
solution, respectively. The morphological properties, UV–vis absorbance, and emission properties
of obtained CP encapsulated DSPE-PEG2000−COO-XT5 (CPDP-XT5) NCs was determined by
utilizing scanning electron microscopy, UV–vis spectroscopy, and fluorescent spectroscopy,
respectively. Cytotoxicity properties of CPDP-XT5 was evaluated by performing MTT assay on
RPMI 8226 myeloma cell lines. Cell viability results confirmed that XT5 molecules were
successfully conjugated to DSPE-PEG2000-COOH. Specific targeting properties of CPDP-XT5
NCs and XT5-free NCs (CPDP NCs) were investigated on RPMI 8226 myeloma cell lines by
utilizing fluorescent microscopy and results indicated that CPDP-XT5 NCs shows significantly
high affinity in comparison to CPDP NCs against the cells. Homology modeling and molecular
docking properties of XT5 molecules were evaluated and simulation results confirmed our results.
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1. Introduction

Early diagnosis of cancer disorders, which is known as a main
step of therapy, has attracted the interest of many research
groups to develop new strategies especially in non-invasive
forms in the last years [1]. In recent years, fluorescent dyes
have been widely used as tracing tools in various fields such
as diagnosis of cancer cell/tissue and microbial infections for
both in vitro and in vivo conditions [2, 3]. Fluorescent dyes
naturally do not exhibit any specific targeting/binding prop-
erties against cancer cells therefore further modification pro-
gress should be applied [4]. There are various strategies for
specifically modifying fluorescent molecules against cancer
cells including direct and indirect approaches. In direct
modification, fluorescent molecules are chemically modified
with functional groups or immobilized to antibodies, aptamers
and proteins [5]. Whereas, in indirect modification techni-
ques, fluorescent molecules are targeted/delivered with
modified carriers/vectors to the desired cells [6]. As an
example to direct modification, de boer et al conjugated
cetuximab (anti-epidermal growth factor receptor) with near
infrared fluorescent dye in order to specific imaging of car-
cinoma cells. The results indicating successful localization of
fluorescently labeled antibodies (cetuximab) onto carcinoma
cells [7]. Guan et al modified heptamethine cyanine dye with
genistein-IR 783, the biologically active flavonoid-based
natural product, for bioimaging of MCF-7 cancer cells. The
in-vito and in-vivo stadies shows high affinity of modified dye
to MCF-7 compare to non-modified one [8]. Dong et al in
concept of indirect modification of fluorescent dye, buried the
synthetized amphiphilic dye (SQR23) within bilayer region of
folic acid (targeting agent) post functionalized liposomes in
order to bioimaging of SKOV-3 ovarian cancer cells. Fluor-
escence observation of SKOV-3 ovarian cancer cells using
FA-modified liposomes shows 3-folled increasing in intencity
value compare SKOV-3 that treated with unmodified lipo-
somes [9].

Drug delivery systems are known as engineered systems
which were developed in the past few decades to deliver
therapeutic/diagnostic compounds specifically to the desired
cell or tissues with high performance in living systems [10].
For this purpose, drugs or dyes are delivered by using proper
vehicles in various forms, sizes and materials based on
application area [11, 12]. Although the selection of a drug
delivery vehicle can be different depending on the various
applications, in biological cases they should be in nano-size
and biocompatible nature [13].

Nanotechnology has opened up a new age in drug
delivery and diagnosis of cancer and infectious disease
applications due to its promising advantages and incredible
potential of development [14–16]. Nanoparticles that are
known as a fundamental part of nanotechnology, show tre-
mendous potential as an effective drug delivery system [12,

17–19]. Although various materials in nano-size have been
commonly used in drug delivery applications, organic
nanostructures like liposomes and micelles are preferred due
to their novel advantages including low toxicity, high drug/
dye packaging capacity and facile modification proper-
ties [20, 21].

Nowadays, preparation of nanoparticles enables highly
sensitive detection of cancer cells depending on diagnosis
strategies which can be performed due to modification of
nanoparticle systems via proper ligand molecules (probe)
such as antibodies, aptamers, or new generation of receptor
sensitive engineered drugs [22–24]. Abedin et al used
monoclonal antibody to specified synthetized paclitaxel car-
ring trastuzumab-based nanorods against HER2 positive
breast cancer cells for induced synergistic treatment purpose.
MTT assay results indicated that the antibody specified
nanorods significantly induced synergic effects compare to
antibody free system [25]. In order to treatment Gynecolo-
gical Carcinoma Cells, Lopes-Nunes et al used AS1411
aptamer to functionalize gold nanoparticles caring acridine
orange derivative (as an anticancer agent). Cellular uptake
and cell viability results shows the high performances of
aptamer to deliver the anticancer caring nanoparticle system
to cancer cells [26].

Protease-activated receptors (PARs) are members of the
G protein-coupled receptor family [27]. There are four
members of the PAR family (PAR1-4). Among of them,
PAR1 is the most characterized one [28]. Thrombin as a
coagulation protease activates PAR1 receptor through the
cleavage of its N-terminal that generates a new
N-terminus [29].

PAR1 has been found to be a promising target in the
discovery of novel agents against various cancers.
Researchers have demonstrated that PAR1 is overexpressed
and has a role in many cancers including breast cancer [30],
colon cancer [31], prostate cancer [32], kidney cancer, lung
cancer and hepatocellular carcinoma [33]. The experimental
studies proved that PAR1 can induce proliferation and dif-
ferentiation of multiple myeloma conditions [34]. Over-
expression of PAR1 is also correlated with malignant
phenotype [33]. Furthermore, its expression level is propor-
tional with the degree of invasiveness in invasive and meta-
static tumors [35]. In another study, its overexpression has
been correlated with high level of β-catenin, which is asso-
ciated with lung cancer, ovarian cancer, endometrial cancer,
malignant breast tumors, hepatocellular and colorectal carci-
nomas [36, 37].

Benzamide derivatives including XT5 were found to
have in vitro anticancer effects [38]. In our previous study,
XT5 was suggested as a novel molecule that has apoptotic
effects on imatinib sensitive and resistant K562 cells [39]. In
one of our previous studies, it was found that XT5 has a
significant PAR1 antagonist activity [34]. The results
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obtained in our previous studies were supported by molecular
modeling analysis [34, 39].

Computational methods play a substantial role in the
drug discovery process [40]. Homology modeling and
molecular docking are among the computational methods that
enable the drug discovery process faster, cheaper and more
efficient. Homology modeling is used in the prediction of the
3D structure of proteins from their amino acid sequences [41].
Molecular docking is utilized to generate the binding pose
and affinity between ligands and targets by predicting their
interactions [42].

In this work, we developed a fluorescence enable XT5-
functionalized liposomal-based nanocapsules (NCs) system in
order to achieve the specific diagnosis of myeloma cancer cells.
For this purpose, DSPE-PEG2000-COOH lipid molecules were
conjugated with XT5 molecules due to esterification reaction and
confirmed by Fourier-Transform Infrared Spectroscopy (FTIR)
analysis. PFBT fluorescent-conjugated molecule was encapsu-
lated by DSPE-PEG2000-COO-XT5 through ultra-sonication
techniques. scanning electron microscopy (SEM), UV–vis and
fluorescence spectrophotometry analysis confirmed successful
preparation of PFBT-encapsulated DSPE-PEG2000-COO-XT5
NCs (CPDP-XT5 NCs) in desired properties. Cytotoxicity of
NCs was evaluated by performing MTT assay and results
indicated that the developed system has high biocompatibility.
Specific targeting properties of XT5-conjugated NCs were also
investigated by utilizing fluorescence microscopy. The obtained
images indicated that CPDP-XT5 NCs possess significantly high
affinity to myeloma cells. Specific targeting properties of our
previously synthesized molecule, XT5, was also examined. 3D
structure of its potential target, PAR1, was generated by
homology modeling. Then, the binding mode and affinity of
XT5 to PAR1 was analyzed by molecular docking. In addition,
nanoparticle that bears XT5 was prepared and cytotoxic activ-
ities of XT5 and XT5 conjugated NCs were also compared.

2. Material and methods

2.1. Synthesis of XT5 molecule

10 mmol of p-ethyl benzoic acid was refluxed with 2 ml SOCl2
(Sigma-Aldrich, USA) and 5 ml benzene (Sigma-Aldrich, USA)

at 80 °C for 4–5 h. At the end of the reaction, benzene and
SOCl2 were blown off using rotavapor and the residue was
dissolved in 10 ml of diethylether (Sigma-Aldrich, USA). In
another flask, 10 mmol of 2-amino-5-nitro phenol (Sigma-
Aldrich, USA) and 20 mmol of NaHCO3 (Sigma-Aldrich,
USA) were dissolved in 10 ml of distilled water and 10 ml of
diethylether. The obtained solution was added to the substance
obtained in the previous step. The mixture was rotated in an
ice bath overnight and filtered through plain filter paper and
washed sequentially with distilled water, 2N HCl (Sigma-
Aldrich, USA), distilled water and diethylether. Finally, the
obtained solution was crystallized with ethanol and activated
charcoal [43]. The chemical mechanism of the preparation of
XT5 molecules was shown in figure 1.

2.2. Preparation and characterization of DSPE-PEG2000-XT5
conjugate

In order to specific targeting of NCs against myeloma cells,
NCs were functionalized with XT5 by condensation reaction
between the hydroxyl groups of XT5 and carboxyl-terminated
lipid. For this purpose, 5 mg of DSPE-PEG2000-COOH
(1.8 μmol) (Sigma-Aldrich, USA) as an encapsulation
material, 1.5 mg of XT5 (5.4 μmol) and 0.55 mmol of
4-Dimethylaminopyridine (DMAP) (Sigma-Aldrich, USA)
were dissolved in 2 ml of tetrahydrofuran (THF) (Sigma-
Aldrich, USA), and cooled at −10 °C (ice/NaCl bath) under
stirring. 5.55 mmol of dicyclohexylcarbodiimide (DCC)
(Sigma-Aldrich, USA) was dissolved in THF and added
dropwise to the previously prepared solution and the reaction
mixture was stirred at −10 °C under N2 atmosphere. The
consumption of DCC in the reaction medium was monitored
by decreasing kinetic of the 2110 cm−1 infrared characteristic
peak of N=C=N moiety using FT-IR spectroscopy (Nico-
let™ iS™ 10 FTIR Spectrometer-Thermo Fisher Scientific,
USA). At the end of the condensation reaction, filtration was
used to remove the insoluble side product dicyclohexylurea.
Finally, after filtration, THF was removed in a rotary eva-
porator and the solid phase repeatedly dissolved/precipitated
with DCM/n-hexane in order to completely remove unde-
sired dicyclohexylurea from the environment. The obtained
DSPE-PEG2000-COO-XT5 was dried under a vacuum oven
and kept at −20 °C. The characterization of the prepared

Figure 1. The chemical mechanism of preparation of XT5 molecules.
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DSPE-PEG2000-COO-XT5 conjugate was carried out by uti-
lizing FT-IR and 1H NMR spectroscopies (Bruker 400 MHz
AV, USA).

2.3. Preparation of fluorescence enables
DSPE-PEG2000-COO-XT5 NCs (CPDP-XT5 NCs)

The preparation of fluorescence label carrying NCs with desired
targeting properties against PAR1 receptors, PFBT conjugated
polymer (CP) (Sigma-Aldrich, USA) was encapsulated
according to the protocol which was previously reported by the
author [44]. For this purpose, 1 mg of DSPE-PEG2000-COOH
and 2 mg of synthetized DSPE-PEG2000-COO-XT5 molecules
were dissolved in 1 ml of THF. In parallel, 1 mg of PFBT
molecule was dissolved in 1 ml of THF and added to the pre-
vious solution. The prepared solution was added to 9 ml of
distilled water and sonicated for 60 s with a 12 W probe
sonicator (Bandelin SONOPULS HD 2200, Sigma, USA). The
mixture was stirred in dark conditions overnight in order to
remove THF residues from the aqueous solution. The obtained
solution was centrifuged at 3000 g for 15 min and the super-
natant was collected and filtered by using 0.2 μm syringe fil-
tration. The CPDP-XT5 NCs solution was dialyzed (cut-off: 30
KDa) overnight to remove possible impurities and non-immo-
bilized XT5 molecules.

Absorption, excitation, and emission properties of pre-
pared NCs were investigated by using a fluorescence spec-
trophotometer (CARY ECLIPSE, Australia) and UV–vis
spectrophotometer (SHIMADZU UV-1800, Japan). The
morphologic properties of NCs were visualized by utilizing
SEM (Zeiss Sigma 300, France). The size and charge stability
of nanocapsuls in different solutions including D.W., P.B.S.
and culture medium were avaluted by employing a zeta
potential (Malvern, USA).

2.4. Cell viability tests

The cytotoxicity properties of XT5, CPDP NCs and CPDP-
XT5 NCs were investigated by performing MTT technique.
For this purpose, RPMI 8226 cells were cultured in 96-well
plates at 10.000 cells/well seeding density in 100 μl of RPMI-
1640 medium (Gibco, NY, USA) with 10% fetal bovine serum
(Hao Yang, China). Cells were exposed to various con-
centrations (0, 0.8125, 1.625, 3.25, 7, 5 and 15 pM) of XT5,
CPDP NCs and CPDP-XT5 NCs. Then, the plates were
incubated in a 5% CO2 humidified incubator at 37 °C for 72 h.

After 72 h, the medium was removed from wells and
washed with PBS and replaced with initial amount of the
fresh medium. 10 μl of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide salt (MTT agent) (Sigma-
Aldrich, USA) was added to the cells at a concentration of 5
mg ml−1 and incubated for 2 h at 37 °C. Then, 100 μl of MTT
solvent solution was added and incubated at 37 °C overnight.
After overnight incubation, 96-well plates were measured
by utilizing spectrophotometer (Biotek, Epoch USA) at
550 and 690 nm to evaluate cell viability. The absorbance
values of free cells was accepted as 100% viability and
the viability in other cell groups (XT5, CPDP NCs and

CPDP-XT5 NCs) were calculated as percentage based on this
value.

2.5. Investigation of specific targeting properties of CPDP-
XT5 NCs

10 000 cells of myeloma cancer cell line was added to each
well containing 100 μl of medium. The cells were separately
exposed to equal concentration of CPDP NCs and CPDP-XT5
NCs and then incubated at 37 °C for 1 h, thus allowing time
for NCs to interact with the PAR receptor of the cells. The
specific attachment of CPDP-XT5 NCs to PAR1 receptor of
myeloma cancer cells was determined by using fluorescence
microscope (Olympus BX51, America). The bonding prop-
erties of CPDP NCs was investigated as a negative control
group.

2.6. Homology modeling

The PAR1 sequence retrieved from UniProt (accession
number: P25116) was used in the modeling [45]. Protein
BLAST search was performed by setting the database as PDB
(protein data bank). Then, homology modeling was under-
taken using MODELLER [46], and I-TASSER [47]. The
generated models were compared and the model with rela-
tively high quality was selected. Validation and verification of
the best model was performed with SAVES [48]. The binding
site of the model was predicted using CASTp [49].

2.7. Molecular docking

Molecular docking was performed with AutoDock Vina.
[50] Prior to docking, GRID map of the model was deter-
mined. The model generated was prepared by adding polar
hydrogens and assigning Gasteiger charges. The ligand
(XT5) was drawn using ChemDraw ultra 12 [51]. The
ligand was prepared by minimizing its energy, adding polar
hydrogens and assigning Gasteiger charges. After assigning
the receptor, the ligand and the size as well as the center of
the GRID map, the command prompt of AutoDock Vina
was run [50]. The receptor-ligand interactions of the
docking results were visualized and analyzed by using
Discovery Studio 3.5 [52]. To validate and compare the
molecular docking results, the same procedure was applied
on two reference ligands that are PAR1 inhibitors, Atopaxar
and Vorapaxar.

3. Results and discussion

Conjugation performance of XT5 to DSPE-PEG2000-COOH
molecules was evaluated using FTIR spectroscopy.
For comparison purposes, between DSPE-PEG2000-COOH
and its conjugated form, FTIR spectra were obtained
for DSPE-PEG2000-COOH and DSPE-PEG2000-COO-XT5
(figure 2). The appearance of a new peak after conjuga-
tion reaction at 1614 cm−1,1508 cm−1 and 1470 cm−1

(characteristic band of C–C stretching vibration of aromatic
ring in XT5) confirmed that esterification reaction was
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successfully performed between free carboxyl group of
DSPE-PEG2000-COOH and hydroxyl group of XT5 mole-
cules. The bound assignments of obtained FTIR spectra of
XT5, DSPE-PEG2000-COOH and DSPE-PEG2000-COO-XT5
are shown in table 1.

In order to confirm conjugation of XT5 to
DSPE-PEG2000-COOH molecule, 1H NMR was performed
and obtained spectra related to XT5, DSPE-PEG2000-COOH
and DSPE-PEG2000-XT5 conjugated was shown in figure 3.
The peak at 2.69 ppm corresponds to the methyelene group of
XT5, whereas the 7.26–7.89 ppm peak atribitued to the
benzene ring of XT5 (figure 3(a)). The characteristic benzene
peak ring was present in the DSPE-PEG2000-COOH spectrum
(figure 3(b)). The NMR spectrum of DSPE-PEG2000- XT5
demonstrated that aromatic ring protons peaks shifted upfield
as hydroxy group were replaced by ester linkage (figure 3(c)).
In other words, there were benzene rings with new chemical
envernement in DSPE-PEG2000-XT5, indicating successful
conjugation of XT5 to DSPE-PEG2000-COOH.

The excitation and emission properties of the fabricated
CPDP-XT5 NCs were determined by utilizing UV–vis and
fluorescence spectrophotometer. The results indicated that

CPDP-XT5 NCs exhibited two absorbance peaks at 340 and
460 nm with emission at 560 nm (figure 4(a)). In addition, it
is shown in figure 4(b) that the fabricated CPDP-XT5 NCs
exhibited strong yellow fluorescence emission under UV light
exposure at 365 nm. The obtained NCs had strong yellowish
fluorescence emission under UV exposure at 365 nm. The
morphologic properties of NCs were determined by using
SEM and the images demonstrated that CPDP-XT5 NCs were
synthetized in spherical morphology with size distribution of
∼80 nm (figure 4(c)). The size distribiton and zata potantial
properties of CPDP-XT5 NCs in D.W., P.B.S. and culture
medium were measured and size and potantial were obtained
to be ∼85 nm and −25.5 mV without any significant changes
in the used solutions (figures SI (1) and (2) (available online
at stacks.iop.org/NANO/33/265101/mmedia)). This should
be noted that the similar values were obtained after one month
by Zeta-potantial mesurements.

The biocompatibility properties of XT5, CPDP NCs and
CPDP-XT5 NCs were determined by using conventional
MTT assay. Therefore, we performed cytotoxicity tests by the
exposure of RPMI 8226 cells with various concentrations of
XT5, CPDP NCs and CPDP-XT5 NCs. The dose-dependent
proliferation of cells was evaluated after 72 h. For the case of
the XT5 molecule, after 72 h of treatment, cell viability of
>80% was detected at the maximum concentration (15 pM)
(figure 5(a)). The decrease in cell viability indicated that the
XT5 molecule shows desired affinity to PAR1 receptors. The
reason could be overexpression of PAR receptors in cancer
cells compared to normal cells [58, 59]. The cytotoxicity of
the CPDP NCs was evaluated and the results indicated high
biocompatibility of fabricated NCs with cell viability of
>100%. The CPDP NCs exhibited similar molecular structure
with cell membrane that enable NCs to integrate into the cell
membrane and improve cell proliferations [44]. Cell

Figure 2. Representative FTIR spectra of (a) XT5, (b) DSPE-PEG2000-COOH) and (c) DSPE-PEG2000-COO-XT5 molecules.

Table 1. Bond assignment of synthetized DSPE-PEG2000-COO-XT5
conjugate.

Wavenumber (cm−1) Chemical bound References

745 N–H twisting of amide bond [53]
1100 C–O stretching vibration [54]
1641 C–C stretching vibration of

aromatic ring
[55]

1671 C=O stretching vibration [56]
1737 C=O stretching vibration (ester) [57]
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viabilities of synthetized CPDP-XT5 NCs were also evaluated
and results exhibited similar values to the XT5. This results
clearly proved that XT5 molecule was successfully con-
jugated to DSPE-PEG2000-COOH molecule.

Specific binding/targeting properties of CPDP-XT5 NCs
to myeloma cancer cell line was determined via fluorescence
microscopy. As shown in figures 4(d) and (e), in the presence
of CPDP-XT5 NCs system, significant fluorescence signals
were observed for myeloma cancer cell. Therefore, as
expected, the XT5 free CPDP NCs did not exhibit any spe-
cific binding properties to myeloma cancer cell (figures 5(b)
and (c)). The results indicated that our proposed NC system
can be used for detection of myeloma cancer cells similar to
the reports available in literature [60, 61]. This should be
noted that the binding/targeting properties against cells with
low PAR1 receptor expression was previously investigated in

our group and resultas shows low binding properties compare
to highly expressed PAR1 receptor cellas like as myeloma
cancer cells [62].

3.1. Homology modeling

BLAST search of the protein structure with PDB ID 3VW7
was found to give the highest similarity with the used
sequence. The A chain of 3VW7 was revealed to have 73%
coverage (81% coverage after the propeptide was cleaved)
and 99.07% identity with the PAR1 sequence. Homology
modeling is considered as a reliable method for computational
structure prediction [41]. Thus, the structure of PAR1 was
generated using homology modeling. From the validation and
verification analysis, the model was demonstrated to have
96% ERRAT quality factor, 87% Verify 3D value and 97% of

Figure 3. Representetive 1H NMR spectra of (a) XT5, (b) DSPE-PEG2000-COOH and (c) DSPE-PEG2000-XT5.

Figure 4. (a) Absorption and emission properties of fabricated CPDP-XT5 NCs, (b) fluorescence emission of CPDP-XT5 NCs under 365 nm
UV light exposure, and (c) SEM imaging of CPDP-XT5 NCs.
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the residues was in the allowed region of the Ramachandran
plot (figure 6). The results showed that the generated model is
reliable enough.

Molecular docking was carried out with the generated
model (figure 7(a)). The binding site of the model was esti-
mated with CASTp before docking (figure 7(b)).

3.2. Molecular docking

After the GRID map was determined in a way that covers the
binding region (figure 8(b)), molecular docking of the model
with ligands was performed with AutoDock Vina. Molecular
docking results demonstrated that XT5 interacted with PAR1
model through hydrogen bonds at Asp214, Leu216, Tyr225,
His294 and alkyl–alkyl (pi) interactions at Ileu46 and Val204

positions (figure 8(a)). The interactions were found to have
similarity with the reference ligands, Atopaxar and Vorapaxar
(table 2). The interactions at Leu216, Asp214 and Tyr225
were common to XT5 and Atopaxar. In addition, the two
interactions at Ileu46 were common to XT5 and Vorapaxar
(figure 8(c)). Furthermore, the binding energies of the docked
molecules were similar (table 2). Computational analysis of
the interactions of XT5 and similar derivatives with PAR1
was performed in our previous studies using the structure of
3VW7, which covers 70% of the PAR1 sequence. Molecular
docking results were found to have fewer hydrogen bond
interactions than the results obtained in a previous study [34].
This might be resulted from lack of some parts of the amino
acid sequence in the structure used in previous studies. Thus,
the molecular docking analysis performed by generating the

Figure 5. (a) Cell viability of XT5, CPDP NCs and CPDP-XT5 NCs on RPMI 8226 cell line, (b) and (c) fluorescence imaging of RPMI 8226
cells treated with CPDP NCs, and (d) and (e) fluorescence imaging of RPMI 8226 cells treated with CPDP-XT5 NCs.

Figure 6. Validation and verification results of the model. (a) ERRAT quality factor (96%), (b) verify 3D value (87%) and (c) Ramachandran
plot (97% in the allowed region).
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Figure 7. (a) 3D structure of the generated model and (b) predicted binding region of the model.

Figure 8. Binding profile of (a) XT5, (b) Atopaxar and (c) Vorapaxar with the prepared model.

Table 2. Comparison of the interactions of the reference ligands (Atopaxar, Vorapaxar) and XT5 with the model (common residues are
written in bold).

Ligands Binding energy (kcal mol−1) Hydrogen bond interactions Other amino acid interactions

Atopaxar −7.8 Leu216 (2) Asp214, Leu221, Tyr225
Vorapaxar −8.6 His213, Thr219 Ile46 (2), His300
XT5 −9.7 Asp214, Leu216, Tyr225, His294 Ile46 (2), Val204
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3D structure of the full sequence was resulted in better
interactions. The computational analysis revealed that XT5
can bind and thus inhibit PAR1. Therefore, the computational
results indicated that XT5 had high affinity towards PAR1,
which confirmed the MTT assay results.

4. Conclusion

Early diagnosis plays a vital role in combating cancer.
Hence, in this study, PFBT fluorescent-conjugated molecule
was encapsulated by DSPE-PEG2000-COO-XT5 NCs to
come up with a novel way for early diagnosis of myeloma
cancer cells. The characteristics of the prepared molecules
were found to meet the required conditions as confirmed by
SEM, UV–vis and fluorescence spectrophotometry. Cyto-
toxicity analysis of NCs through MTT assay exhibited that
the developed system had high biocompatibility. Further-
more, fluorescence microscopy investigation of CPDP-XT5
NCs indicated that they had high specific affinity towards
myeloma cells.

The potential mechanism of action for XT5 was eluci-
dated through homology modeling and molecular docking. A
reliable 3D structure of the potential target, PAR1, was built
by homology modeling. After that, the binding region was
predicted and then binding mode and affinity of XT5 to PAR1
was analyzed by molecular docking. The molecular docking
outcomes showed that XT5 could bind to PAR1 similar to the
standard drugs. Hence, the computational analysis demon-
strated that the specific affinity towards myeloma cells might
result from XT5’s affinity towards PAR1.
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