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 Abstract: Molecular docking is a structure-based computational method that generates the binding pose 
and affinity between ligands and targets. There are many powerful docking programs. However, there is 
no single program that is suitable for every system. Hence, an appropriate program is chosen based on 
availability, need, and computer capacity. Molecular docking has clear steps that should be followed care-
fully to get a good result.  

Molecular docking has many applications at various stages in drug discovery. Although it has various 
application areas, it is commonly applied in virtual screening and drug repurposing. As a result, it is play-
ing a substantial role in the endeavor to discover a potent drug against COVID-19. There are also ap-
proved drugs in the pharmaceutical market that are developed through the use of molecular docking. As 
the accessible data is increasing and the method is advancing with the contribution of the latest computa-
tional developments, its use in drug discovery is also increasing. 

Molecular docking has played a crucial role in making drug discovery faster, cheaper, and more effective. 
More advances in docking algorithms, integration with other computational methods, and the introduction of 
new approaches are expected. Thus, more applications that will make drug discovery easier are expected. 

A R T I C L E  H I S T O R Y 

Received: April 28, 2022 
Revised: July 22, 2022 
Accepted: August 18, 2022 
  
DOI: 
10.2174/1570180819666220922103109 

Keywords: CADD, computational method, drug design, drug discovery, molecular docking, molecular modeling.  

1. INTRODUCTION 

 Computer-aided drug design (CADD) is an area that con-
sists of many computational strategies for the discovery, 
design, and development of novel therapeutic agents. CADD 
has a crucial role in improving active ligands, discovering 
novel drugs and understanding biological processes at a mo-
lecular level [1]. Furthermore, the application areas of 
CADD methods are widening with the increase in biological 
and chemical data, increase in data storage capacity, increase 
in identified drug targets, and advance in data processing 
capacity [2]. 

 CADD methods enable rapid, economic, and more effi-
cient drug discovery and development [3]. The drug devel-
opment process includes drug discovery, preclinical studies, 
clinical phase studies, and registration. This is an expensive 
process that takes more than 10 years on average [4]. CADD 
has applications mainly in the drug discovery phase of this 
process [5]. CADD provides the advantage of filtering 
smaller series of compounds expected to be active from large 
compound libraries and therefore guiding to find of the lead  
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compounds, optimization of the lead compound, and design-
ing novel compounds in the drug discovery [6, 7]. In addi-
tion to this, CADD methods can sometimes replace in vivo 
models and lead to the formation of high-quality datasets [8]. 
There are several approved drugs in the market that are de-
veloped through CADD. For example, the anti-HIVs ralte-
gravir, saquinavir, indinavir, and ritonavir, the anti-influenza 
oseltamivir, the antihypertensive captopril, the carbonic an-
hydrase inhibitor dorzolamide and the neuraminidase inhibi-
tor zanamivir are developed by using CADD methods [9].  

 Based on the type of data available, computer-aided drug 
design methods can be categorized as target-based and lig-
and-based drug design methods [10]. In the target-based 
drug design, the aim is to design potential active compounds 
by using target structures. Although docking is a typical ex-
ample of this approach, molecular dynamics and binding site 
estimation methods can also be evaluated in this class [11, 
12]. Homology modeling can be employed at this approach's 
early stages in case the protein's three-dimensional structure 
hasn’t been determined yet [13]. In the ligand-based drug 
design, the aim is to interpret the structure of the target by 
using the structure of active ligands. Pharmacophore model-
ing and QSAR (quantitative structure-activity relationships) 
are examples of this approach [14]. QSAR models effective-
ly estimate experimental activities based on molecular de-
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scriptors [15]. To increase the performance of CADD, it is 
important to use both approaches together in a way that 
complements each other. This is also known as the hybrid 
approach [1]. For example, molecular dynamics is utilized in 
both methods for the discovery of novel drug candidates 
[13]. There is also a method named de novo molecular de-
sign that is used to design novel chemical entities which sat-
isfy a desired molecular profile [16]. This method gives the 
opportunity to generate novel molecular structures in the 
abscence of a starting template [17]. In this study, molecular 
docking, which is one of the target-based drug design meth-
ods, is reviewed. 

 Molecular docking is a structure-based computational 
method that generates the binding mode and affinity between 
ligands and targets by predicting their interactions [18, 19]. 
There are several docking tools used for this purpose. Auto-
Dock, AutoDock Vina, GOLD, Glide, MOE, ICM, and 
FlexX are amongst the popular software in use [20]. Many of 
them are powerful docking tools, but there is no sole soft-
ware suitable for every system. Thus, users should choose 
their preferable software based on availability, their needs, 
and their computer capacity. It is also possible to use more 
than one software in a way that increases the quality of the 
output [21]. 

 Molecular docking has various applications in the drug 
discovery and design process. In the early years of its appli-
cation, it was mainly used to investigate the molecular inter-
actions between ligands and targets [22]. Nowadays, it sup-
ports wider and more diverse areas of drug discovery [23]. It 
has applications in virtual screening, target fishing, drug side 
effect prediction, polypharmacology, and drug repurposing. 
With the involvement of state-of-the-art computational ap-
proaches like artificial intelligence, there is an advance in 
docking algorithms. The integration of molecular docking 
with other approaches, such as ligand-based methods, is also 
underway. Moreover, there is a significant increase in open-
source biological and chemical data. All these are contrib-
uting to the advance in molecular docking. With the advanc-
es in molecular docking, its application in drug discovery is 
rapidly increasing [11, 24]. 

 Molecular docking has substantially brought anti-HIV, 
anticancer, and various other drugs to the pharmaceutical 
market [25]. A typical example of the successful application 
of molecular docking is the design of rilpivirine [26]. The 
molecular modeling studies that led to the discovery of rilpi-
virine involved the docking of diarylpyrimidine ligands into 
the reverse transcriptase binding site. The computational 
assessment followed by the experimental evaluation resulted 
in the approval of rilpivirine against HIV [27]. Similarly, 
molecular docking guided the design of betrixaban. A lead 
compound with improved potency was discovered [28]. The 
binding mode of the lead compound was elucidated by dock-
ing using the GOLD program. Based on docking and other 
computational observations, further modifications that led to 
the development of betrixaban were performed [29]. In an-
other example, molecular docking was used in the discovery 
of the neuraminidase inhibitor zanamivir. Molecular docking 
was used to analyze the active site of neuraminidase and its 
interactions with its new inhibitors. The interaction of 
zanamivir with neuraminidase was elucidated [30]. After the 

computational results were confirmed by the in vivo tests, the 
drug was approved [25]. Flexible molecular docking was 
also used in the discovery and development of drugs [31]. 
For instance, it was utilized in the discovery of vaborbactam. 
ICM docking was used in the design of lead β-lactamase 
enzyme inhibitors with better activity. The lead molecule 
was evaluated with computational and experimental meth-
ods. Finally, vaborbactam was developed [32]. 

 There is a great effort worldwide to discover an effective 
drug to combat the global pandemic, COVID-19 (Corona-
virus disease 2019) [33]. The available literature shows the 
discovery of new potent molecules against novel coronavirus 
is still at its early stage [34]. Thus, virtual screening and drug 
repurposing are recommended as the fastest options for the 
discovery of a potent drug against the novel coronavirus [35, 
36]. As molecular docking has been commonly used in vir-
tual screening and drug repurposing, it can play a substantial 
role in discovering a potent drug against the novel corona-
virus [37]. Therefore, it has been applied and recommended 
to be used in the endeavor to discover promising drugs 
against the coronavirus using computational methods [38].  

 Molecular docking has established applications at various 
stages of the drug discovery process. With the contribution 
of the latest computational advances, it is expected to have 
more applications [25]. Thus, updated information about 
molecular docking is in need. This review is aimed at meet-
ing this demand in academia and the pharmaceutical indus-
try. In this work, the basic principles of molecular docking, 
including its steps are presented. Current applications of mo-
lecular docking in drug discovery are explained with exam-
ples. Furthermore, the challenges and advances in molecular 
docking are summarized.  

2. PRINCIPLES OF MOLECULAR DOCKING 

 Docking is a method based on the examination of the 
fitting of the designed compounds to target cavities and their 
interactions with the residues [39]. In the computational drug 
discovery process, docking is generally undertaken between 
small molecules and macromolecules, as in protein-ligand 
docking. This type of docking is known as molecular dock-
ing. Over the last few years, docking has also been per-
formed between two macromolecules, as in protein-protein 
docking [40]. 

 The basis for the majority of the docking programs is 
molecular mechanics, which explains polyatomic systems 
using classical physics. Experimental parameters are used to 
reduce the deviation between the experimental data and mo-
lecular mechanics. Due to the limitations of the experimental 
methods, mathematical equations are converted into parame-
ters using quantum mechanics semiempirical and ab initio 
theoretical calculations [39]. In this regard, it is a set of equa-
tions with different parameters that aim to define molecular 
force field systems, which are based on potential energy, 
torsional properties, the geometry of the bond, electrostatic 
terms, and Lenard-Jones potential. AMBER, CHARMM, 
GROMOS, OPLS-AA, and UFF have known examples of 
force fields [41]. 
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 In the 1980s, molecular modeling was performed using 
force fields. In the continuation of these methods, modeling 
of molecular processes like the binding of ligands to their 
target proteins was undertaken. Two main methods are built 
for this purpose: Rigid body and flexible docking [10]. In 
rigid body docking, ligands and targets are considered two 
different bodies that recognize each other according to their 
shape and size. In flexible docking, protein-ligand recogni-
tion occurs by considering the effect of the two structures on 
each other [42]. In early practices, a rigid ligand was docked 
into a rigid target. With the advances in computing power, 
new efficient computational methods that enable the docking 
of flexible ligands into rigid targets are introduced. As the 
targets are also flexible at physiological conditions, their 
conformational changes are expected to be addressed. Oth-
erwise, ligands that could bind to a target could give a mis-
taken interaction in computational analysis. This is addressed 
by introducing target flexibility in molecular docking. Ad-
dressing the targeting flexibility requires additional computa-
tional resources. Approximate methods that make it practical 
have been introduced [43]. 

 There are many servers and programs that are used in 
molecular docking. In each program, various force fields and 
algorithms are used for pose prediction, refinement, and gen-
eration of the target-ligand interactions (Table 1) [44]. Alt-
hough there are many powerful docking programs, it is good 
to remember that none of the docking algorithms in use are 
suitable for every system. It is recommended to use more 
than one program [21].  

2.1. General Recommendations and Guidelines for Mo-
lecular Docking  

2.1.1. Hardware and Software Requirements for Molecular 
Docking 

 As ligand docking and computing are performed in a few 
minutes, docking computations are not considered intensive 
processing unit (CPU). Currently, almost every personal 
computer (PC) is capable of running small docking works 
(500-1000 compounds) in an acceptable time [61]. However, 
in the virtual screening of public databases using docking-
based methods, the number of molecules could rise rapidly 
(106 compounds). This requires more data processors to fin-
ish the process in a reasonable time. Generally, GPU data 
processing is more efficient and attractive for intensive pro-
cessing than CPU-based computations [40]. 

2.1.2. Program Selection in Molecular Docking  

 There are many docking methods and approaches (Table 
1). Among these methods, for beginners, easily accessible 
academic or free software are preferable. Some of the dock-
ing programs are not designed to run on Windows [62]. In 
such cases, beginners can start with Linux and overcome the 
problem. In addition to this, Windows-friendly programs 
such as AutoDock, Vina, and LeDock can be preferred [40]. 

2.2. Steps of Molecular Docking  

 The molecular docking process consists of target protein 
determination and preparation, ligand preparation, determi-

nation of the type of docking to be used, selection of the best 
docking scoring function, and validation (Fig. 1) [40, 63]. 

2.2.1. Target Protein Determination and Preparation 

 The properties of the selected protein structure affect 
docking results [64]. With the development of X-ray crystal-
lography, NMR, Cryo-EM, and similar structure determina-
tion methods, the number of proteins with known three-
dimensional (3D) structures is rapidly increasing and they 
are accessible to the public in databases like the protein data 
bank (PDB) [65]. The first step of docking is retrieving the 
3D structure of the protein, preferably bound by a ligand, 
from the PDB. Using 3D structures with high resolution (˂ 
2Å) or structures bound by a high-affinity ligand is suggest-
ed. The situation may be different for a few proteins [23]. In 
such cases, using structures that structural studies have pre-
viously investigated might be appropriate [66]. Furthermore, 
if the 3D structure of the protein hasn’t been determined yet 
and is thus not available in the PDB, it should be built by 
homology modeling [67]. 

 Molecular docking needs the specification of some pa-
rameters. The PDB files often have deficient information and 
therefore, they need to be corrected [68]. In the preparation 
of the protein, hydrogens must be added, water should be 
removed, charges must be assigned, and energy minimiza-
tion should be undertaken. There are several preparation 
modules that fix common problems of PDB files [69].  

 Parameterization methods used vary depending on the 
software [70]. AutoDock and SwissDock utilize an in-
program force field, whereas MOE uses AMBER and Le-
Dock uses CHARMM charges and atomic species. There-
fore, it is important to employ the same preparation protocol 
in all docking procedures to compare the respective docking 
results [71]. 

2.2.2. Preparation of Ligand 

 The structure of the ligands is drawn with programs like 
ChemDraw [72] or is downloaded from chemical libraries or 
databases like PubChem [73] and ZINC [74]. Before using 
these structures in docking, energy minimization should be 
undertaken [75]. 

 It is recommended to visually examine the results of the 
preparations of the target and ligand. Because some prepara-
tion methods can lead to mistakes in molecular descriptions, 
such as incorrect connection, missing bonds, and abnormal 
geometries. These errors often occur during the conversion of 
one molecular format to another. Hence, it spreads easily [71]. 

 After preparing the target and ligand, the binding site 
should be determined and limited. It is possible to do this 
step either by the specification of the coordinates manually 
or by utilizing the coordinates of a ligand attached to the 
protein. There are also programs that are used to calculate 
the probable binding site [76]. The grid makes mapping the 
binding area, which will be the center of docking calcula-
tions. The grid can be thought of as a box with known di-
mensions split into small squares in which the probe atoms 
describe the contour of a possible interaction. Resolution and 
size of the grid affect docking results [46]. 
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Table 1. Molecular docking programs. 

Program Availability Properties 

AutoDock [45] Free Rigid body-flexible docking. 
It is used with Autodock tools. Calculation of the grid maps is automatic. 

AutoDock Vina [46] Free Rigid body-flexible docking. 
It applies recurring local search global optimization. It is faster than AutoDock. It provides improved binding 

affinity prediction with a new scoring function. 

Dock [47] Academic Flexible docking. 
It is widely applied to flexible targets and flexible ligands.  

LeDock [48] Academic Flexible docking. 
Since it gives results fastly with high accuracy, its use in virtual screening is recommended.  

FlexX [49] Commercial Rigid body-flexible docking. 
It can be utilized in virtual screening. 

Glide [50] Commercial Ligands are flexible in this docking. 
To decrease the software search range, it uses information about the area. It has XP (extra precision), SP (standard 

precision), and highly efficient virtual screening modes. 

GOLD [51] Commercial Flexible docking. 

The evaluation of its accuracy and reliability appeared to give good results. 

Plants [52] Academic It has a good balance between usage and efficiency. It allows calculating water exchange. 

ICM [53] Commercial It gives the facility of both ligand-protein and protein-protein docking. It provides an ICM-Pro interface that 
makes the docking process easy. 

MOE [54] Commercial It has a good interface and intuitive aspect. It also consists of other tools that are used in protein and ligand preparation. 

Surflex [55] Commercial For predocking minimization and post docking optimization, it uses procedures. It makes use of morphologic 
similarity functions and fast pose production techniques. 

LibDock [56] Academic LibDock depends on the matching of the polar and apolar binding site features of the target-ligand complex. As it is 
driven by matching features rather than a molecular mechanics force field score, its performance attracts interest.  

CDOCKER [57] Free CDOCKER (CHARMM based DOCKER) provides the advantages of full ligand flexibility, CHARMM force 
field, and reasonable computation time. Flexible docking. 

Fitted [58] Free Fitted can deal with both macromolecule flexibility and the presence of bridging water molecules. 

Molegro [59] Free The program Molegro Virtual Docker (MVD) has four search algorithms and four native scoring functions. MVD 
provides the opportunity of performing detailed statistical analysis of docking results when it is integrated with 

other programs. 

Fred/Hybrid [60] Commercial Fred uses the target structure solely to pose and score ligands. On the other hand, Hybrid uses both the target and 
ligand structures to pose and score ligands. Hybrid has the ability to use multiple conformations of the target. 

 

 
Fig. (1). Steps of molecular docking. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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2.2.3. Determination of Docking Type 

 The choice of docking type to be used depends on the 
needs of the researcher. If docking of several molecules at 
the binding site of a protein at a specific pH, water, and sol-
ubility is desired, flexible docking programs may be pre-
ferred. However, if many more compounds (in thousands) 
are to be scanned from databases, flexible docking methods 
may be a bad option unless there is a high processor and a 
fast computer. Therefore, the user can choose different dock-
ing methods according to the computer's capacity and the 
target's properties [77]. 

2.2.4. Selection of the Best Docking Scoring Function 

 The best docking scoring function is selected depending 
on the stability of the ligand-protein complex. It is difficult 
to choose a suitable scoring function that gives a correct 
binding pattern and the possible ligand. Theoretically, the 
lower the binding free energy (ΔG) of a protein-ligand com-
plex, the more stable the complex is [78, 79].  

 Docking score is computed by various programs to iden-
tify and rank many poses of a ligand in a reasonable time 
[80]. Scoring functions should be able to differentiate bind-
ers from nonbinders clearly. In addition to this, it should be 
able to discriminate between correct and incorrect binding 
modes of a ligand with high accuracy and in a reasonable 
time [81]. Scoring functions are classified into three main 
categories: Empirical, force field, and knowledge-based. In 
empirical scoring functions, the free energy of binding is 
calculated by adding hydrogen bonding, Van der Waals in-
teractions, electrostatics, hydrophobic interactions, and the 
conformational free energy released when a ligand binds. In 
the force field method, force field energy is computed using 
molecular mechanics force fields similar to those used in 
CHARMM and AMBER. This energy includes internal en-
ergies, coulombic interactions, including Van der Waals in-
teractions and hydrogen bonding. The entropy and solvent 
energies are calculated separately. Knowledge-based scoring 
functions are calculated by converting the frequencies of 
ligand-protein atom interaction pairs into free energies using 

Boltzmann distributions [15]. A single scoring function is 
not perfect. Hence, it is possible to combine different scoring 
functions to improve calculations with a single scoring func-
tion. This method is known as consensus scoring [80]. 

2.2.5. Docking Validation 

 Like any other technique, the docking process should 
also be validated. The docking results are validated by re-
docking of reference ligands with targets and comparing the 
RMSD (root mean square deviation) values, binding pose, 
binding affinity, and coverage of the estimated bindings with 
previously acquired results. If the ligand and target structures 
are complex, it is recommended to carry out molecular dy-
namics studies. Molecular dynamics simulations can be uti-
lized to optimize the target before and after docking and to 
provide flexibility, fix the complex after docking, calculate 
the binding free energy including the solvent effect, and en-
sure the correct sequence of possible ligands [82]. At the end 
of the process, the binding pose, binding residues and bind-
ing energies of the ligands are revealed (Fig. 2). 

3. APPLICATIONS OF MOLECULAR DOCKING IN 
DRUG DISCOVERY 

 With advances in docking algorithms, an increase in 
open-access information on ligands and targets, the applica-
tions of molecular docking in drug discovery are rapidly 
increasing [83]. In the early years, it was mainly used in the 
investigation of the molecular interactions between ligands 
and targets (15). However, these days the application scope 
is wider and there is somewhat a shift in the application area. 
Molecular docking has applications in virtual screening, tar-
get discovery and profiling, drug side effect prediction, 
polypharmacology, and drug repurposing (Fig. 3) [24]. 

3.1. Virtual Screening  

 Virtual screening is used to find hits and lead compounds 
from molecular databases according to scoring functions 
[84]. The applications of docking in virtual screening have 
increased with the combination of the method with other 

 
Fig. (2). Binding residue points and binding pose of ciprofloxacin inside the binding site of DNA gyrase B. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
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new applications. For example, the combination of molecu-
lar dynamics and free energy binding estimation methods 
with docking has improved virtual screening [85].  

 
Fig. (3). Applications of molecular docking in drug discovery. (A 
higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

 

 These days there is a great effort worldwide to discover a 
promising drug against the global pandemic, COVID-19. 
There are efforts to discover drugs using SARS-CoV-2 (se-
vere acute respiratory syndrome coronavirus 2) targets such 
as the structural spike (S) protein, envelope (E) protein, 
membrane (M) protein, nucleocapsid (N) protein, and non-
structural proteins (Nsps) like the main protease (also called 
3C-like protease (3CLpro, nsp5)), papain-like protease (PLpro, 
nsp3), RNA-dependent RNA polymerase (RdRp, nsp12), 
nsp15 endoribonuclease, nsp16 (2′-O-methyltransferase) and 
nsp13 helicase. Host-based targets like angiotensin-
converting enzyme 2 (ACE2), transmembrane protease ser-
ine 2 (TMPRSS2), furin, and cathepsin are also used in this 
effort [86]. Molecular docking has been used together with 
other methods to support this effort [87]. For instance, re-
searchers performed an in silico screening of phytochemicals 
and revealed that some of them could be effective against 
SARS-CoV-2. Selected 154 herbal chemicals were docked to 
five therapeutic protein targets of SARS-CoV-2 (proteases, 
PLpro, SGp-RBD, RdRp, and ACE2) by using AutoDock 
Vina. Using the docking score, the best 20 herbal chemicals 
for each protein were screened for further investigation. By 
using further computational analysis methods, 7 herbal 
chemicals were proposed as potential SARS-CoV-2 inhibi-
tors for further in vitro and preclinical tests [88]. Similarly, 
2000 molecules from the Selleck database of natural com-
pounds were screened by using ensemble docking against the 
main protease (Mpro). The compounds that exhibited better 
binding were filtered further by using Molecular Dynamics 
(MD) simulations. Then, 11 natural compounds that were 
found to bind to Mpro protease well were purchased and test-
ed in vitro. Finally, five promising Mpro protease inhibitor 
natural compounds were determined [89].  

 In another similar work, a structural study was performed 
to identify promising drug candidates to fight against 
COVID-19. In this work, virtual screening together with 
molecular docking was performed to look for potential inhib-
itors of the Mpro of SARS-CoV-2. Virtual screening was 
done by using the Glide docking module. First, 50 molecules 
from 2100 FDA-approved drugs in the ZINC database and 
20 molecules from 400 natural products in the Spec database 
were screened based on their docking score, glide energy, 
and hydrogen bond interactions. Then, with XP glide dock-
ing and MD simulations, two compounds were suggested for 
further experimental tests [90]. Similarly, hits from two in 
silico screening studies were utilized in a wet-lab study to 
identify potential Mpro inhibitors. The REAL Space or ZINC 
databases were screening by ranking the molecules using 
docking parameters [91, 92]. The promising compounds 
were synthesized and assayed for their ability to inhibit the 
activity of Mpro. Five compounds were found to inhibit the 
enzyme in vitro [93]. 

3.2. Target Discovery and Profiling 

 Reverse docking allows the prediction of the biological 
target of the respective molecule. As a result, it is a valuable 
approach in computational target discovery and profiling 
[94]. There are many docking approaches and algorithms for 
reverse screening of a ligand against protein structure librar-
ies and evaluation of its binding affinities. However, the im-
plementation of these methods needs a convenient target 
library [95]. There are several databases available for reverse 
docking screening. PDTD (potential drug target database) is 
a good example of familiar databases used in this area [96]. 
In addition to this, target libraries can be prepared manually 
from databases such as PDB and TTD (therapeutic target 
database) [97]. Reverse docking tools and web servers like 
TarFisDock [98], idTarget [99], INVDOCK [100], Docko-
Matic [101] and SePreSA [102] are available for researchers. 

 In reverse docking screening, for a ligand, probable tar-
gets can be ranked by using the scoring functions used in the 
programs [50]. For example, research using reverse docking 
therapeutic mechanisms of astragaloside IV was investigat-
ed. In this study, all signaling pathways thought to be impli-
cated in the therapeutic actions of all cardiovascular disease 
drugs approved by the FDA were considered. At the end of 
the study, 39 putative targets were identified, and three of 
them (CN, ACE, and JNK) were experimentally validated 
[103].  

3.3. Prediction of Drug Side Effects 

 Early detection of adverse drug effects is of great im-
portance in the drug discovery process. Drug candidates have 
been reported to fail clinical trials mainly due to adverse 
effects from unanticipated off-target interactions [104]. 
There are many computational approaches to support this 
work. However, most model exercises require sufficient bio-
activity data or previously reported side effects [105]. To 
predict side effects, molecular docking requires only struc-
tural information about the target. It is, therefore an im-
portant approach in predicting potential side effects of mole-
cules in the early phases without having detailed information 
about the drug and bioactivity records. For example, re-
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searchers conducted a reverse docking screening with torce-
trapib, a cholesteryl ester transfer protein inhibitor, to inves-
tigate the increase in mortality and cardiac events associated 
with the side effects of the drug. Torcetrapib was docked 
into a set of protein targets based on the enriched signaling 
pathway. The results demonstrated that platelet-derived 
growth factor receptor (PDGFR), hepatocyte growth factor 
receptor (HGFR), IL-2 Receptor, and ErbB1 tyrosine kinase 
might be the potential off-targets [106]. Databases that facili-
tate the identification of drug side effects have been devel-
oped. However, good performance in these predictions di-
rectly depends on the information in the databases. SIDER 
(side effect resource) is one of the databases known in this 
area [107]. Furthermore, by combining docking with ma-
chine learning (ML) and statistical approaches, advanced 
screening methods, which also make drug side effect predic-
tions more advanced, were developed [108]. 

3.4. Polypharmacology 

 Polypharmacology expresses the identification of ligands 
that interact with targets with a selected series of therapeutic 
values. The pharmaceutical industry has concentrated on the 
development of immensely selective drugs to avoid possible 
side effects [109]. However, the high failure rate experienced 
in the final phases of clinical tests as a result of lack of ther-
apeutic activity has led new drug designs to shift to 
polypharmacology [110]. In this regard, molecular docking 
provides a valuable opportunity as it permits the identifica-
tion of chemical structures that interact effectively with re-
lated targets simultaneously. It is difficult to design multitar-
get ligands for rational reasons. Furthermore, the choice of 
protein structures to be utilized for docking can greatly in-
fluence the outcome of the design. This is particularly the 
case when working with targets with remote binding sites 
[111]. Docking is currently used in combination with other 
in silico methods by considering the challenge of multitarget 
drug design. Especially, several studies that comprise the 
determination of multitarget ligands by applying docking 
screening together with pharmacophore modeling have been 
reported [112]. The determination of the first binary inhibitor 
of Hsp90/B-Raf is an example. In this study, it has been 
shown that substructure prefiltering and pharmacophore-led 
docking can effectively be combined to look for polyphar-
macological ligands whose structures interact with different 
targets. In another recent study, the potential of the cationic 
pentapeptide Glu-Gln-Arg-Pro-Arg was assessed for its po-
tential role as an anticancer and anti-SARS-CoV-2. The 
binding affinity of the peptide to integrins, Mpro, S protein, 
and ACE2 was evaluated using molecular docking [113]. 
Polypharmacology workflows that combine docking with 
other in silico methods were also followed [114]. 

 There are docking-based web tools and platforms used to 
investigate polypharmacology and determine the ligands' 
multitarget activities. CANDO (computational analysis of 
novel drug opportunities) [115] is an example for platforms 
and DRAR-CPI (drug repositioning and adverse reactions 
via chemical protein interactome) [116] is an example for 
web servers. 

3.5. Drug Repurposing 

 Drug repurposing is an established drug discovery way 
that provides the opportunity to identify new therapeutic 
applications for approved drugs, drug candidates under eval-
uation, natural products, or generally presynthesized ligands 
[117]. Considering the wealth of information available in 
public databases on ligands, targets, and diseases, efforts to 
increase the application of the discovery strategies based on 
in silico repurposing have increased over the last decades. In 
silico repurposing methods have been shown to offer valua-
ble new opportunities in drug discovery and development 
[118].  

 In this regard, molecular docking is among the most 
widely used computational methods used for repurposing 
ligands toward new therapeutic targets [119]. Docking lets 
virtual screening of databases of approved drugs, phyto-
chemicals, or presynthesized compounds to the target of in-
terest in a reasonable time [95].  

 Recently, there are many studies that focus on repurpos-
ing existing drugs to combat COVID-19 [120]. For example, 
researchers searched for commercially available drugs to 
repurpose them against SARS-CoV-2 using in silico ap-
proaches. In this work, structure-based screening of ap-
proved drugs against Mpro and the serine protease TMPRSS2 
of the novel coronavirus. Homology modeling was used to 
generate the 3D structure of TMPRSS2. The structure-based 
screening was performed by AutoDock Vina, and the result-
ing top-ranked hits were selected. With further molecular 
docking using AutoDock 4.2, the best hits based on docking 
score were screened. Then, with ADMET profile and drug-
likeness predictions, four approved drugs (talampicillin, 
lurasidone, rubitecan, and loprazolam) from the drug library 
were found to be potential inhibitors of Mpro and TMPRSS2 
of the novel coronavirus. The stability of the complexes was 
also checked by MD simulations [121]. 

 In another study, researchers identified potential inhibi-
tors of Mpro of the novel coronavirus using in silico drug re-
purposing. Molecular docking calculations were carried out 
using AutoDock 4.2 to select top-ranking drugs from the 
DrugBank database. After the top-ranked approved drugs 
from the database were filtered, 35 drugs with docking 
scores of lower than -11.0 kcal/mol were picked for further 
investigations. Then with MD simulations followed by MM-
GBSA (molecular mechanics–generalized Born surface area) 
binding energy calculation, DB02388 and cobicistat 
(DB09065) were found to be potential inhibitors for Mpro of 
the novel coronavirus [122]. Similarly, mechanistic investi-
gation of the interaction of teicoplanin with MPro has been 
done by molecular docking and molecular dynamics to re-
purpose it against SARS-CoV-2 [123]. Similarly, inhibitors 
of its homolog, Hepatitis C Virus (HCV) protease, were in-
vestigated to repurpose them as Mpro inhibitors. 20 direct 
acting antivirals of HCV were docked against Mpro and six of 
them were found to be promising inhibitors [124]. In another 
similar work, Remdesivir was found to be one of the hits for 
Mpro inhibitors [125]. The available literature shows research 
in discovering new molecules against novel coronavirus is 
still in its infancy. Thus, virtual screening and drug repurpos-
ing of the available databases are the fastest options for the 
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discovery of potent drugs against the novel Coronavirus 
[35].  

 Based on these promising results, it is possible to say that 
docking is a valuable approach in drug repurposing. Espe-
cially, when it is combined with other computational ap-
proaches, such as ligand-based methods, its value increases 
[24]. 

4. CURRENT STATUS OF MOLECULAR DOCKING 

 Molecular docking is broadly used in the academia and 
pharmaceutical industry [11]. The wide scope of its applica-
tions, exemplified in the previous sections, demonstrates the 
opportunity it provides for drug discovery. As is expected, 
research works in molecular docking have been increasing. 
Thus, the number of published articles in this area is rapidly 
increasing (Fig. 4). To investigate the extensive usage of 
molecular docking over the last two decades, the number of 
documents available in publication databases has been 
found. For this purpose, Scopus, PubMed, and ScienceDirect 
search engines were used. These search engines were pre-
ferred since they were found to offer good search tools and 
demonstrated satisfactory performance [126]. In each of 
them, published documents were searched by using ‘molecu-
lar docking’ as a keyword. After extracting the number of 
documents by year in the three engines, the average number 
was calculated for each year starting from 2000. By using 
these data, the graph of publications in the last two decades 
was drawn (Fig. 4).  

 The results demonstrated that the number of publications 
generated had nearly doubled every five years (Fig. 4). This 
is in line with other similar studies conducted before. Cur-
rently, as illustrated by the publications, molecular docking 
is widely used [20, 127]. 

 Although many powerful programs are used in molecular 
docking, there is no single program suitable for every sys-
tem. Consequently, users choose their preference depending 
on the availability of the program, their needs, and their 
computer capacity. They might also utilize more than one 

program [21]. Therefore, molecular docking programs are 
expected to have different popularity.  

 In this work, the relative popularity of selected docking 
tools was also investigated. The total number of published 
documents in Scopus, PubMed, and ScienceDirect search 
engines was extracted. To find the total number of docu-
ments, ‘docking’ and the respective docking tools were used 
as a keyword together. After the calculation of the average 
total publication until 2020, the relative popularity graph was 
drawn (Fig. 5). AutoDock was found to be the most popular 
docking tool. Furthermore, GOLD and Glide were found to 
be popular among commercial docking tools (Fig. 5). Previ-
ously reported studies also gave a similar popularity degree 
[20, 127]. There has also been a considerable increase in the 
popularity of AutoDock Vina in the last few years [128]. 

5. ADVANCES IN MOLECULAR DOCKING 

 The opportunities provided by molecular docking in the 
drug discovery process are well known. However, intrinsic 
factors limit the prediction performance of docking [129]. 
Thus, although it is essentially a stand-alone method in drug 
design, these days it is used in combination with other com-
putational methods like ligand-based approaches, the rest of 
structure-based approaches, quantum mechanics, machine 
learning, and artificial intelligence (AI). This paves the way 
to overcome some of the most important shortcomings of 
docking [24]. 

5.1. Contribution of Ligant-Based Approaches 

 Ligand-based approaches have been used to identify ap-
propriate target structures for docking-based screening. The 
ability of docking to differentiate active compounds from 
inactive ones may have a high dependence on the 3D struc-
ture of the target used and the degree of similarity of the se-
lected ligands by screening against those compounds co-
crystallized in the target structure. Similarly, ligand-based 
approaches have been utilized to increase the predictive po-
tential of docking screening [130]. For example, it can con-

 
Fig. (4). Publications in molecular docking. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle). 
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tribute to the evaluation of the 3D structure resemblance 
between the binding pattern estimated by docking and the 
experimentally detected binding pattern of the co-
crystallized ligand to the target structure. However, it 
shouldn’t be forgotten that the possibility of using ligand-
based approaches in combination with docking applies only 
to targets with a minimum of one reported co-crystallized 
ligand [131].  

5.2. Contribution of Structure-Based Approaches 

 Structure-based approaches, especially molecular dynam-
ics (MD) and binding free energy prediction, have been 
broadly used in combination with docking to improve virtual 
screening [132]. In this regard, MD is used to measure amino 
acid flexibility in the binding site and to investigate greater 
structural changes with potential accessibility to a given pro-
tein. Therefore, it is an efficient tool for the determination of 
target structures for docking and evaluation of the stability of 
the predicted complex [10]. The opportunities provided by 
MD in silico screening, especially, address flexible targets 
with few elucidated 3D structures. The contribution of bind-
ing free energy estimation to the improvement of virtual 
screening has also been investigated. The output of currently 
used docking algorithms might be affected by poor structural 
sampling. They can also give incorrect binding energy pre-
dictions. Many approaches, such as BEAR (binding estima-
tion after refinement), MM-PBSA (molecular mechanics–
Poisson Boltzmann surface area), and MM-GBSA methods, 
have been taken to address these issues [133]. These ap-
proaches have also been shown to improve virtual screening 
and docking results [134]. 

5.3. Contribution of Quantum Mechanics 

 The contribution of Quantum Mechanics (QM) in im-
proving the prediction of binding free energy by molecular 
docking is acknowledged [135]. The priority of molecular 
mechanics (MM) scoring functions is speed rather than accu-
racy. Therefore, the reliability of predicting the free energy 
of protein-ligand binding interactions is limited [136]. QM 

calculations can be used to improve the prediction of binding 
affinities, including re-scoring in docking [137]. The appli-
cation of QM calculations in docking rescoring brings a bet-
ter electrostatic interaction description and interaction ener-
gy. QM can also play its role in dealing with ionization and 
tautomerism. Thus, QM-based scoring functions provide a 
better correlation of calculated and experimental ligand af-
finities than the classical MM. This in turn, improves its role 
in lead optimization [136]. 

5.4. Contribution of Machine Learning  

 Scoring and ranking candidate molecules by the calcula-
tion of binding affinity is a very challenging issue in molecu-
lar docking. Classical scoring functions need to simplify and 
generalize several features of receptor-ligand interactions to 
maintain efficiency, approachability, and accessibility [77]. 
In addition, classical scoring functions use linear regression 
models, parametrically controlled learning methods that take 
a predetermined functional form. Here, parametric methods 
convert the input variables to the output forms with a prede-
fined function and adjust them in a theory-inspired manner 
during the creation of the scoring function. This rigid scheme 
often results in unadaptable scores that do not capture the 
intrinsic nonlinearities of the data. Therefore, they show low 
performance in cases that are not considered in their formu-
lations [138].  

 Machine learning algorithms can be used to improve or 
replace predetermined function forms used in binding affini-
ty prediction in classical scoring. These have also been used 
to identify binders/non-binders in virtual screening [139]. 
Machine learning, nonparametric learning, does not take the 
form of predetermined functions. Instead, outputs are ex-
tracted from the input data. It can give a continuous output as 
in nonlinear regression. This in turn allows for diverse and 
accurate scoring. Random forest (RF)-Score is one of the 
first machine learning scoring functions that outperform 
classical scoring functions. In addition, logistic regression 
and support vector machines (SVM) were used to improve 
docking-based binding affinity predictions [138, 140, 141]. 

 
Fig. (5). The relative popularity of docking tools. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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5.5. Contribution of Artificial Intelligence 

 Artificial intelligence (AI) allows easy use of the ever-
growing open-access information sources in chemical, struc-
tural, and biological activity databases. This increases the 
accuracy of binding affinity estimations [142]. In this con-
text, deep learning neural networks have been used in pose 
generation and scoring [143]. The convolutional neural net-
work has been investigated in molecular docking by desig-
nating protein-ligand complexes as 3D cages. Deep learning 
scoring functions have produced comparable and even supe-
rior results to machine learning and other non-neural network 
algorithms [144, 145]. Machine learning might also be treated 
as a member of this class. AI-based ML learns from the prop-
erties of the available data and then makes predictions on blind 
data [146]. These approaches might not be preferable to newly 
discovered therapeutic targets that have not been thoroughly 
investigated yet and thus chemical, structural, and bioactivity 
data about them are not available [24]. 

6. CHALLENGES IN MOLECULAR DOCKING  

 There are many difficulties in using docking tools and the 
results of the study. It is reported that each program has its 
limitations and flaws [147]. Therefore, programs cannot pro-
vide the same output with the same reliability. Furthermore, 
the program may not perform well when the chemical struc-
ture processed exceeds the capacity of the developed soft-
ware. Therefore, it is important to continuously validate and 
correct the developed software according to the new data. 
[127]. Considering all these, not surprisingly, the acceptance 
of the predictive tool results is still difficult. However, if the 
current problems of the tools are addressed properly, the 
value of the results and, therefore, the acceptance will in-
crease. In addition to this, if the resolution of the protein 
structure available in the PDB or obtained from homology 
modeling is poor, the docking result might not be reliable. 
Thus, the selection of the structure of the protein to be used 
in docking should be done with great care [148]. 

6.1. Accuracy of Docking 

 Docking methods are widely used to identify possible 
ligands at the early stages of drug discovery and develop-
ment. There are many programs used to elucidate the interac-
tion of molecules with targets. Despite these programs, some 
molecules have not yielded promising results when they are 
tested in vivo [63]. Docking results may be interrogated due 
to diverse issues. The first one is related to the use of protein 
structure. Protein structures are generally available in com-
plexes with ligands in the PDB [149]. Researchers delete the 
bound ligand to use the protein structure and do the docking 
of the molecule being investigated. On the other hand, this 
procedure may affect the docking output. The second im-
portant issue is the binding site environment. Drug candidate 
molecules must bind to targets within the cell to exhibit their 
activities. In some cases, even if the docking results exhibit 
high binding in the in silico environment, they may give a 
different result in the in vivo environment [63]. 

6.2. Properties of Ligand 

 It is impossible to predict the agonist or antagonist nature 
of a ligand by docking. Docking studies give information 

only about the binding mode and affinity of a molecule to-
wards a receptor [20]. To check the agonist or antagonist 
properties of a molecule, experiments should be done in a 
laboratory after the docking process. Therefore, it is recom-
mended not to overinterpret docking results regarding the 
nature of the ligand unless other validations like lab experi-
ments, are performed [150]. 

Ligand preparation and conformation of ligands are also im-
portant in determining the docking results. In the ligand 
preparation, molecules are ionized prior to docking. Howev-
er, the tautomeric state of the molecules is still a problem. 
There is no clear way of using the variable tautomeric states 
of the molecules to be docked [23]. 

6.3. Properties of Target  

 The quality of the structure of the target influences the 
reliability of the molecular docking. Molecular structures 
with the best geometrical parameters are chosen, but this 
doesn’t guarantee that they are free of error. Thus, mecha-
nisms of filtering that will help in ensuring the quality of the 
structures available in the databases, such as PDB are in 
need [151]. 

In the preparation of the target, solvents and ligands in the 
structure are usually removed. This leaves the binding pock-
et completely free. However, in the physiological state, the 
environment is different. This leads to a discrepancy be-
tween the two conditions [152]. In recent years, there are 
several attempts to use water molecules in the binding re-
gion. Nevertheless, there are still challenges in the way the 
water is put around the binding site [153]. 

 There are docking programs that use rigid protein struc-
tures. In real conditions, the target structure can fluctuate 
depending on intrinsic and extrinsic factors, although it 
spends more time in the lower energy states. Thus, docking 
programs that keep the target rigid might give inaccurate 
results [153]. Using programs that allow the target structure 
to be flexible can be a solution here.  

6.4. Search and Scoring Problems 

 Docking is difficult due to the various means of present-
ing two molecules in the 3D space together (three transla-
tional and three rotational degrees of freedom ). The search 
algorithm implemented looks for all possible orientations 
between two molecules by systemically translating and rotat-
ing one molecule over the other [154]. Many solutions can 
be generated with a search algorithm. The solutions are 
ranked according to their scores [155]. There are diverse 
docking functions, and each program has its scoring system, 
so there is no universal scoring function [156]. In general, 
the correlation of docking scores with experimental binding 
affinities is still poor. Each docking algorithm uses a scoring 
function together with a search tool. Theoretically, the best 
matching algorithms and scoring functions should be merged 
to solve docking problems [157]. 

CONCLUSION 

 Molecular docking is a popular structure-based drug de-
sign method that predicts the interactions of small-molecule 
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ligands with the appropriate target. There are various power-
ful docking programs used for this purpose. Since no single 
program is suitable for every system, choosing the most ap-
propriate one is recommended based on availability, need, 
and computer capacity. 

 Molecular docking has many applications at various 
stages of drug discovery. It has an established application, 
especially in virtual screening and drug repurposing. Besides 
the familiar diseases, there are several emerging diseases 
nowadays. Thus, there is an urgent need for the discovery of 
potent drugs against such diseases. Molecular docking is 
playing an important role in the discovery of such drugs.  

 The challenges and limitations of molecular docking are 
overcome by the involvement of other computational ap-
proaches. State-of-the-art computational methods like AI and 
ML are expected to contribute much more in the near future. 
Furthermore, with the increase in accessible biological and 
chemical data, its application field is widening. As a result, 
the use of molecular docking in the drug discovery process is 
increasing. As a reflection of this, the number of publications 
in this area has doubled almost every five years for the last 
two decades. 

 The latest developments in other computational ap-
proaches had a substantial impact on molecular docking. 
Therefore, there are advances in the quality of the generated 
ligand-target binding modes and affinities. This will increase 
the applicability of the resulting interactions. Thus, the role 
of molecular docking in making the drug discovery process 
rapid, economical, and more effective is expected to rise.  

LIST OF ABBREVIATIONS 

3CLpro = 3C-Like Protease  

3D = Three Dimensional 

ACE2 = Angiotensin-Converting Enzyme 2   

AI = Artificial Intelligence  

BEAR = Binding Estimation After Refinement 

CADD = Computer-Aided Drug Design  

CANDO = Computational Analysis of Novel Drug 
Opportunities 

COVID-19 = Corona Virus Disease 2019 

CPU = Central Processing Unit  

DRAR-CPI = Drug Repositioning and Adverse Reac-
tions via Chemical Protein Interactome 

E = Envelope  

GPU = Graphics Processing Unit 

HCV = Hepatitis C Virus  

HGFR = Hepatocyte Growth Factor Receptor 

HIV = Human Immunodeficiency Virus 

M = Membrane  

MD = Molecular Dynamics 

ML = Machine Learning  

MM = Molecular Mechanics 

MM-PBSA = Molecular Mechanics–Poisson Boltz-
mann Surface Area 

Mpro  = Main Protease  

N = Nucleocapsid   

Nsp = Nonstructural Proteins  

PDB = Protein Data Bank  

PDGFR = Platelet-Derived Growth Factor Receptor  

PDTD = Potential Drug Target Database 

PLpro = Papain-Like Protease  

QM = Quantum Mechanics 

QSAR = Quantitative Structure-Activity Relati-
onships 

RdRp = RNA-dependent RNA Polymerase  

RM = Random Forest  

S = Spike  

SARS-CoV-2 = Severe Acute Respiratory Syndrome Co-
ronavirus 2 

SIDER = Side Effect Resource 

SVM = Support Vector Machines  
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