

Polycyclic Aromatic Compounds

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpol20

Quantum Mechanical Studies of Three Aromatic Halogen-Substituted Bioactive Sulfonamidobenzoxazole Compounds with Potential Light Harvesting Properties

Y. Sheena Mary, Tugba Ertan-Bolelli, Renjith Thomas, Akhil R. Krishnan, Kayhan Bolelli, Esin Nagihan Kasap, Tijen Onkol & Ilkay Yildiz

To cite this article: Y. Sheena Mary, Tugba Ertan-Bolelli, Renjith Thomas, Akhil R. Krishnan, Kayhan Bolelli, Esin Nagihan Kasap, Tijen Onkol & Ilkay Yildiz (2021) Quantum Mechanical Studies of Three Aromatic Halogen-Substituted Bioactive Sulfonamidobenzoxazole Compounds with Potential Light Harvesting Properties, Polycyclic Aromatic Compounds, 41:7, 1563-1579, DOI: 10.1080/10406638.2019.1689405

To link to this article: <u>https://doi.org/10.1080/10406638.2019.1689405</u>

+	View supplementary material 🕼	Published online: 11 Nov 2019.
	Submit your article to this journal $arsigma$	Article views: 238
à	View related articles $ abla$	Uiew Crossmark data 🗹
	Citing articles: 18 View citing articles 🖸	

Check for updates

Quantum Mechanical Studies of Three Aromatic Halogen-Substituted Bioactive Sulfonamidobenzoxazole Compounds with Potential Light Harvesting Properties

Y. Sheena Mary^a, Tugba Ertan-Bolelli^b, Renjith Thomas^c (b), Akhil R. Krishnan^d, Kayhan Bolelli^b, Esin Nagihan Kasap^e, Tijen Onkol^f, and Ilkay Yildiz^b

^aDepartment of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India; ^bFaculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Yenimahalle, Ankara, Turkey; ^cDepartment of Chemistry, St. Berchmans College (Autonomous), Changanassery, Kerala, India; ^dDepartment of Physics, Malabar Christian College, Kozhikode, Kerala, India; ^eFaculty of Pharmacy, Department of Basic Sciences, Gazi University, Ankara, Turkey; ^fFaculty of Pharmacy, Department of Pharmaceutical Chemistry, Gazi University, Ankara, Turkey

ABSTRACT

Three different organic compounds, 2-phenyl-5-(4-trifloromethyl phenyl sulfonamido) benzoxazole (PTPS), 2-(4-chlorobenzyl)-5-(2,4-dinitrophenylsulfonamido)benzoxazole (CNSB) and 2-(4-fluorobenzyl)-5-(2,4-dinitrophenyl-sulfonamido)benzoxazole (FBPS), were synthesized. To find their energetically stable conformation, geometry optimization was done using density functional theory with the level B3LYP/cc-pVDZ. Electron distribution of the system was studied using molecular electrostatic potential map. Different intermolecular interactions arising from hyperconjugative effect were investigated using the natural bond orbital (NBO) formalism. Nonlinear optical properties were further studied using first-order hyperpolarizability values. The three compounds may be important in the development of novel inhibitor molecules of Topoisomerase II enzyme, as lead compounds. Light harvesting efficiency of PTPS is 0.9342, which shows that it is having potential applications in the design of new DSSC's.

ARTICLE HISTORY

Received 11 June 2019 Accepted 1 November 2019

KEYWORDS

Benzoxazole; DFT; DSSC; LHE; molecular docking

Introduction

Benzoxazole ring system exhibits various biological activities such as antimicrobial and antitumor.¹⁻⁴ 2-(4-Chlorobenzyl)-5-(2,4-dinitrophenylsulfonamido) benzoxazole (CNSB) and 2-(4-fluorobenzyl)-5-(2,4-dinitrophenylsulfonamido) benzoxazole (FBPS) were prepared for their antimicrobial activity.⁵ They showed moderate effect against Gram-positive bacteria *Staphylococcus aureus* and its clinical isolate with 16 μ g/mL minimum inhibition concentration. In 2018, compound 2-phenyl-5-(4-trifloromethyl phenyl sulfonamido) benzoxazole (PTPS) was synthesized and evaluated for inhibitory activities *in vitro* against hGST P1-1 enzyme and found to be more effective than the standard compound Etachrinic acid.³ The deoxyribonucleic acid (DNA) topoisomerases (Topo) enzyme is an essential biocatalyst that is very important in the solution of various topological issues related to DNA transcription, recombination, chromatin assembly, repair, and replication, in the regulation of

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gpol.

Supplemental data for this article is available online at https://doi.org/10.1080/10406638.2019.1689405.

© 2019 Taylor & Francis Group, LLC

CONTACT Renjith Thomas renjith@sbcollege.ac.in Department of Chemistry, St. Berchmans College (Autonomous), Changanassery, Kerala, 686101, India; Ilkay Yildiz i yildiz@pharmacy.ankara.edu.tr Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Yenimahalle, Ankara, 06560, Turkey.

Figure 1. Optimized structures of the compounds PTPS, CNSB, and FBPS using B3LYP/cc-pVDZ.

DNA topology.⁶ Vibrational spectroscopic studies of a number of benzoaxazole and sulfonamido derivatives are reported by Mary et al.⁷⁻¹¹ In this study, three reported benzoxazole compounds (Figure 1) are subjected to various spectral investigations.⁵ Later it was subjected to computational studies. Density functional theory is used to study various factors that govern physical and chemical characteristics of a compound.^{12,13} This paper reveals the quantum chemical studies of particular compounds to give relation between experimental and theoretical results. Also, in this study, PTPS, CNSB, and FBPS were subjected to active site molecular docking studies of human topoisomerase II enzyme in order to predict their protein–ligand interaction. This manuscripts aims to establish the geometry of the molecules under study, and compare and predict the experimental and simulated spectra and other quantum mechanical descriptors to give information about various physicochemical phenomena.

Experimental and computational details

The preparation of the title compounds are as in the literature.^{2,4,14–16} Raman spectra is determined using Delta Nu Raman microscope with a 785 nanometer laser and a CCD detector from DeltaNu Inc (Laramie, WY). 150-mW laser power for 60-s acquisition time was employed, followed by a base line correction for all measurements in the range 200–2000 cm⁻¹. Gaussview¹⁷ is used for drawing input structures and visualize the outputs if the molecules PTPS, CNSB and FBPS and Gaussian09¹⁸ were used for performing quantum mechanical calculations. In this series, DFT (B3LYP) calculation with the basis set CC-pVDZ was used. The geometrical parameters, NBO and energy distributions (HOMO and LUMO), MESP were analyzed and plotted using Gauss View program.

Results and discussion

The molecular structures of PTPS, CNSB and FBPS are optimized, and the structure is shown in Figure 1. The atoms are labeled and numbered. The total energy of title molecules (PTPS, CNSB, and FBPS) calculated by B3LYP/CC-pVDZ is -1802.8143, -2373.6647 and -2013.3020 a.u. The infrared vibrational spectrum of the title molecules in the same level of theory shows no imaginary frequencies indicated that the geometry presents a global minimum. Scaling factor of 0.9613 is used to scale the frequencies.¹⁹ This scaled spectral data is compared with experimental IR spectrum as shown in given in Figure 2. Same level of theory was used to simulate the Raman spectrum which is given in Figure 3, and the data shows the comparative frequency values with experimental Raman spectrum and both simulated spectra are found to be in close agreement with experimental spectra.

Figure 2. Comparison of experimental and simulated (scaled) IR spectrum of PTPS, CNSB, and FBPS using B3LYP/cc-pVDZ.

1566 🕒 Y. SHEENA MARY ET AL.

Figure 3. Comparison of experimental and simulated (scaled) Raman spectrum of PTPS, CNSB, and FBPS using B3LYP/cc-pVDZ.

Vibrational assignments

Table 1 presents the vibration assignment of the title compounds. The vCN (stretch) is observed in the IR region of 1600–1150 cm⁻¹ for benezenoid compounds. The C=N modes are seen at 1550 (PTPS), 1552 (CNSB) and 1560 (FBPS) cm⁻¹ experimentally.²⁰ The C-O stretching modes are assigned at around 1271 and 915 cm⁻¹ experimentally for all the molecules.²⁰ The SO₂ modes are also around 1265 and 1097 cm⁻¹ for all molecules. All the experimentally observed modes are identified and assigned, and they are in close agreement with simulated spectra.

Molecular docking procedure

Docking studies of the compounds PTPS, CNSB, and FBPS were performed by using Schrödinger software.²¹⁻²³ These ligands were prepared by using LigPrep module, and the 2D structures of the ligands were converted to the full 3D structure by assigning the OPLS-2005 force field. LigPrep can generate the expected ionized forms at significant concentrations corresponding to the pH 7.0 ± 3.0 ; generate variations and verification; and optimize the structures. It generates maximum 32 stereochemical structures per ligand. Topoisomerase II α is essential for the survival of actively growing cells. Enzyme concentrations are upregulated dramatically during periods of cell proliferation. Furthermore, topoisomerase II α levels increase over the cell cycle and peak in G2/M.²⁴ Topoisomerase II α is found at replication forks and remains tightly associated with chromosomes during mitosis. Thus, topoisomerase $II\alpha$ is believed to be the isoform that functions in growthdependent processes, such as DNA replication and chromosome segregation. In contrast, expression of the β isoform is independent of proliferative status and the enzyme dissociates from chromosomes during mitosis. Topoisomerase II β cannot compensate for the loss of topoisomerase IIa in mammalian cells, and its physiological functions have yet to be defined. Although topoisomerase II β appears to be dispensable at the cellular level, it is required for proper neural development in mice. While the topoisomerase I and topoisomerase II β enzymes

Table 1. FT-IR and FT Raman experimental and scaled theoretical spectra of title compounds with vibrational assignments.

B3LYP/CC-pVDZ	IR	₽٨	$v(cm^{-1})$	Raman	Assignments
	114	IUV	o(cm)	o(cm)	
2386	16.68	78.64	3256		ьNH
3083	78.22	269.73	3084	-	DINH DCHIII
3062	0.23	45.60	3045		DCHIII
1611	1 46	495 18	_	1618	nPhII
1598	2 31	1821 5	_	1600	pPhIII
1597	7 26	10.21.3	1596	-	ρPhl
1574	12.07	87 72	1573	_	pPhIII
1541	122.84	1897.6	1550	1550	$\nu C = N$
1478	1.46	0.60	1480	-	νPhl
1473	30.55	21.81	_	1474	νPhIII
1462	44.54	7.88	1460	1460	δΝΗ
1426	109.84	427.65	_	1426	vPhII
1385	46.66	8.30	1388	1381	υPhI
1368	44.45	278.30	-	1358	υPhII
1316	11.73	92.81	1319	1318	υPhI
1308	5.74	93.88	-	1307	υPhI
1298	25.68	34.60	1298	-	$\delta CHIII$
1287	41.92	31.41	-	1286	υCF
1272	4.57	10.03	-	1271	υCO
1265	68.95	52.05	1259	-	υSO2
1221	31.43	34.62	1225	-	$\delta CHII$
1181	16.62	65.69	-	1178	$\delta CHII$
1163	17.62	5.21	1162	-	δCHI
1124	127.12	30.12	1128	1126	$\delta CHII$
1088	39.76	1.70	1090	1090	δCHI
1070	2.04	1.27	-	1068	$\delta CHII$
1043	145.09	16.45	1044	-	υCF
1037	29.67	1.69	1028	1032	$\delta CHIII$
1008	29.05	13.61	1016	1005	υPhIII
969	0.09	1.61	-	967	γCHIII
951	0.04	0.27	953	-	γCHI
940	35.68	17.86	-	938	γCHI
904	7.08	90.06	906	906	υCO
860	26.68	5.65	862	-	γCHII
834	33.37	1.72	-	840	γCHI
821	138.42	55.78	-	824	υSN
816	90.78	13.10	816	-	γCHI
/91	37.23	8.26	-	/88	γCHII
762	19.30	2.86	-	/58	γCHIII
722	2.55	0.71	719	-	τPhi
/12	9.32	0.88	/0/	-	
692	22./Z	5.01	-	695	2Phill -Dhill
0/0 6/1	13.33	1.51	-	520	۲۲۱۱۱۱ SDbII
620	47.59	23.70	625	621	SDD1
562	20.02	20.03	025	563	∂riii ∞Phi
554	0.31	1 41		550	δCE3
194 184	1 27	1.41		490	τPhII
467	8 71	0.28		468	τPhl
474	13.23	0.20	_	430	τ PhII
389	12.03	0.55	_	390	δPhl
360	3.08	2.8	_	361	τ CF3
352	7 68	1 97	_	350	τPhII
277	1.23	1.29	_	280	δPhl
237	0.90	1.01	_	240	τSO2
226	1.46	2.23	=	225	τCF3
				-	
CF3 phenyl =====	======				
widdle =======	====				

Mono======lii

(continued)

Table 1. Continueu	Tab	le 1.	Continued
--------------------	-----	-------	-----------

B3LYP/CC-pVDZ υ(cm ⁻¹)	IR IRI	RA	υ(cm ⁻¹)	Raman $v(cm^{-1})$	Assignments –
CNSB					
3109	8.50	29.81	3109	-	υCHI
3096	4.15	52.26	3094	-	υCHIII
3064	8.58	69.00	3062	-	υCHIII
2951	10.81	16.25	2955	-	υCH2
1613	188.45	17.28	1615	1617	vNO2
1596	22.24	194.54	1598	1598	υPhII
1570	34.98	17.70	1573	-	υNO2
1567	6.62	6.09	1569	1567	vPhIII
1556	93.27	25.95	-	1552	vC = N
14/5	69.75	0.20	1480	1482	vPhIII
1455	166.09	41.20	1456	1460	vPhil
1435	17.75	136.0	1432	-	∂NH SCU2
1421	9.25	29.54	1204	1422	
1395	12.08	0.74	1394	1393	UPNIII vNO2
1331	00.55	282.2	1242	1354	UNO2
1245	202.21	14.50	1545	1206	UNO2
1300	05.92	1 25	1202	1500	vPhili
1279	70.50	1.23	1202	1071	0F1111
1270	70.50	3.59	1257	1271	1000
1230	120/13	0.17	1237		8502 8СНІІ
1232	5 85	2 71	1250	1210	δCHI
1170	9.05	9.67	1177	-	бснш
1168	41 98	19.66	-	1169	δCHII
1162	8 79	6 34	1163	1159	δCHIII
1129	29.28	4 26	1138	1135	δCHII
1109	10.02	36.8	-	1108	δCHI
1097	86.02	6.80	1097	-	<i>v</i> SO2
1091	3.86	2.83	-	1093	δCHIII
1066	143.26	19.13	1066	1055	δCHI
1017	7.52	14.96	1025	1027	vPhI
991	36.70	2.58	1000	993	υPhIII
972	0.02	0.76	_	974	γCHI
951	43.89	15.19	953	953	$\dot{\delta}$ CH2
924	2.90	5.94	-	922	γCHIII
911	0.94	0.93	909	-	υCO
887	41.19	2.07	889	886	γCHI
861	77.00	3.73	861	-	γNH
850	15.41	3.74	-	850	γCHI
839	6.48	4.50	835	840	γCHIII
816	24.57	12.17	815	816	$\delta NO2$
790	10.78	11.73	788	792	γCHIII
777	36.82	22.04	770	777	γCHII
747	1.59	4.10	-	750	$\delta NO2$
745	40.43	2.20	747	-	γCHIII
731	95.77	0.51	735	734	∂NO2
720	10.85	8.47	-	718	τPhIII
683	16.17	6.88	-	690	τPhi
6/5	11.42	18.21	6/3	-	∂Phil
660	9.20	28.25	-	660	∂Phi
630	18.40	13.29	-	632	γNH
01Z	11.54 F 37	19.50	-	014	0PNIII -Dhu
20Z	5.27 0.67	8.15 9.05	-	28Z	
508	0.07	0.UD 2 / D	-	20 I 506	
	4.00	3.4Z	-	0UC 470	
472	7 1 5	1.10	-	4/2 107	01111 7Dhii
720 /18	1.15	1.00	-	42/ /16	771111 ~Dbl
300	12.00	1.29	-	410 201	τημ 4ΝΟΣ
338	10.52	2.00	_	228	τιν02 τ<07
326	1 76	2.02	_	374	τNO2
323	1.20	2.50		527	1102

(continued)

B3LYP/CC-pVDZ v(cm ⁻¹)	IR IRI	RA	υ(cm ⁻¹)	Raman $v(cm^{-1})$	Assignments –
291	0.55	6.13	_	293	τPhIII
260	0.48	2.06	-	261	τ SO 2
243	0.15	1.27	-	240	τ CH2
NO2 ==I Benzo=====II					
Chlor=====IIII					
FBPS					
3396	107.93	-	3200	-	υNH
3109	8.59	30.68	3109	-	vCHI
3004	9.25	0.84	3062	_	UCHIII
2950	12.01	15.16	2945	_	DCH2
1613	18.69	16.79	-	1620	vNO2
1604	31.26	3.28	1604	-	υPhIII
1595	10.82	156.9	-	1595	υPhII
1585	8.31	7.88	1586	-	υPhIII
1558	11.23	238.2	-	1560	vC = N
1556	94.32	24.68	1554	1550	υNO2
1497	127.9	1.58	1502	-	υPhIII
1454	158.67	38.18	1455	-	vPhII
1422	8.94	27.28	1420	1424	∂CH2
1403	3./1	0.45	-	1406	UPNIII UNO2
1343	383.I 71.20	150.0	1345	1343	UNU2
1525	71.29	5.40 2.05	1525	-	0PTII δCH2
1260	67 71	6.74	1265	1270	»SO2
1205	126.3	9.02	1205	1270	DCE
1168	30.60	18.47	1168	1166	δCHII
1127	5.47	67.71	-	1130	δCHI
1099	52.86	8.41	1102	-	δ CHII
1096	6.73	7.04	-	1094	υSO2
1080	6.81	2.88	1081	-	$\delta CHIII$
1065	9.81	3.55	-	1057	δCHI
1017	6.26	14.53	1012	1020	υPhI
972	0.01	0.72	969	977	γCHI
951	42.9	14.74	948	952	δCH2
926	24.89	3.4/	925	-	vCO
912	12.89	2.10	-	912	γCHI
910	1.08	1.00	909	-	γCHII
838	5 73	37.0 178	840	800	усни
832	5 38	4.78	831	833	pPhIII
800	1.10	4.32	803	801	vCHIII
780	34.46	9.68	778	775	γ CHII
747	1.08	3.53	747	745	$\delta NO2$
732	94.65	0.40	731	-	$\delta NO2$
660	100.6	16.48	661	662	τPhII
643	2.56	12.07	-	640	δ PhI
622	1.32	7.60	-	620	δ Phll
587	5.06	13.20	-	588	γNH
508	6.07	2.99	-	508	∂SO2
469	6.22	3.04	-	4/1	∂NO2
430	3.29	5/19	-	438	0Phi
272 261	4.44	3.23	-	390	
334	1.05	2.04 5 1 2	-	222 222	71111 71100
305	5.01	0.13	_	305	
269	0.86	0.41	_	267	<i>τ</i> SO2
214	2.16	3.88	_	225	τ PhIII
Nitr====l	2.10	5.00			
Benzo——II					
Flurint =====III					

Table 1. Continued.

do not show any change in the amount and stability during the cell cycle, the protein level of topoisomerase II α varies depending on the position of the cell cycle and the proliferation step. This particular behavior of topoisomerase II α has made this enzyme a priority cellular target for various antineoplastic drugs, and these antineoplastic drugs show more lethal action against cells with high DNA replication rate and also with high topoisomerase II levels. Topo II inhibitors cause double-chain breaks in DNA, while Topo I inhibitors cause single-chain breaks. However, DNA single-chain fractures induced by Topo I inhibitors are probably converted to double-chain forties if they occur only in the continuous chain during replication. So, such drugs turn the Topo I molecule into an agent that damages DNA.^{25,26} Additionally, we are planning to examine the effects of these compounds on Topo II alpha as future study for more information. Crystal structure of Human Topoisomerase II enzyme binds with inhibitor, and etoposide was taken from the Protein Data Bank with ID: 5GWK.²⁷ Prior to docking of the ligands in the active site of the protein, preparation was performed on protein using protein preparation wizard of the software. All hetero atoms and water molecules were removed during the protein preparation followed by the addition of hydrogen atoms. Then, the active site of protein was well defined for the generation of the grid. The grid box was limited to the size of 20 Å at the active site. After that, docking studies were performed with Grid-based Ligand Docking with Energetics (GLIDE) module of this suite, the ligands were docked into the prepared grid by using "Standard precision mode," and no constraints were defined. The docking method was first validated by docking of the known inhibitor, etoposide with 0.42 Å RMSD (root-mean-square deviation) value. To evaluate the receptors active site spatial fit, favorable ligand conformations were generated. The best fitted conformations of the ligands were evaluated and minimized for generating glide scores. To predict the binding affinities and best alignment of the compounds at the active site of the enzyme, hydrogen bonds and pi interactions formed with the surrounding amino acids and glide scores were used. The docking score is -8.040, -7.067, -6.724, and -10.193 for PTPS, CNSB, FBPS, and etoposide, respectively. According to the docking results, PTPS showed strong interactions between one of the important active site residues, Arg487 and DNA similar to etoposide with the docking score of -8.040. PTPS also revealed pi-pi stacking with deoxycytidine DC8, deoxyadenosine DA12, and deoxyguanosin DG13. CNSB revealed H-bond and salt bridges with Arg487; pi-pi stacking and pi-cation interactions with deoxyguanosin DG13. FBPS revealed H-bonds with deoxyadenosine DA6 and deoxycytidine DC8. The compounds used in this manuscript can be used for the design of potent inhibitory drugs of Topoisomerase II enzyme, as lead compounds (Figure 4). Fig S1(Supplementary Information) gives the three-dimensional pictures.

Molecular electrostatic potential (MEP)

MEP provides information about the overall electronic distribution in a particular compound. The color code used provides information of the electron distribution. Usually, the red colored region represents electronegative regions, in the title compounds, and it is found especially near oxygen atoms and nitrogen atoms, and represents the nucleophilic area of the molecules, which is capable of forming stabilizing interactions such as hydrogen bond and other electrostatic bonds with neighboring molecules or solvent molecules in the condensed phase (Figure 5).^{28,29} Electrophilic regions are found near carbon atoms, indicated by blue color. The presence of both electrostatic interactions in the molecule shows that there is a possibility of high degree of electrostatic interactions in the molecule in the condensed state, making the three molecules as ideal candidates for using as drugs. This difference in electronic arrangement is vital in the exhibition of several useful physical and chemical phenomena such as NLO activity, which is explained in the next section.

b) CNSB

a) PTPS

Figure 4. a) Docked position of PTPS: Compound revealed H-bond with Arg487; pi-pi stacking with deoxycytidine DC8, deoxyadenosine DA12, and deoxyguanosin DG13. b) Docked position of cnsb: Compound revealed H-bond and salt bridge with Arg487; pi-pi stacking; and pi-cation interactions with deoxyguanosin DG13. c) Docked position of FBPS: compound revealed H-bonds with deoxyadenosine DA6 and deoxycytidine DC8. d) Docked position of etoposide: Compound revealed H-bond with deoxyguanosin DG13, and Asp463; pi-pi stacking with deoxyguanosin DG13; pi-cation interactions with Arg487. Pink color line refers to H bond. Green color line refers to pi-pi interaction. Red color line refers to pi-cation interaction.

Nonlinear optical (NLO) properties of the molecules

The molecules may differ in their response to a strong light/optical field. Some materials may deviate the path of the light from their usual linear pattern and is termed as the nonlinear behavior.³⁰ This behavior is very important during the design of several electronic devices such as logical gates, communication devices, light switches, memory devices. Theoretically, this NLO ability can be modeled using the hyperpolarizability values obtained from the calculations of

Figure 5. MESP plots of the compounds to identify electrophilic and nucleophilic centers.

Raman spectra during frequency calculations. The calculated data of α and β are represented in Table 2. Data indicate first-order hyperpolarizability (β_{zyy} and β_{yyy} for PTPS, β_{yyy} and β_{xxy} for CNSB, and β_{xxx} and β_{xxx} for FBPS) is larger compared to other positive and negative values in the hyperpolarizability data. Difference in electronic distribution is responsible for this change. The title molecules are therefore highly polarized due to the donor-to-acceptor π -electron transfer. It is a common habit to compare the NLO values with the standard urea molecule, which is usually used as a reference. The study indicated that the molecules PTPS, CNSB, and FBPS show first-order hyperpolarizability value which is 20.33, 114.48, and 114.18 times greater than urea. Hence, the three compounds can be used for the preparation of standard NLO materials.

Natural bond orbital (NBO) analysis

NBO analysis is performed using the NBO suite incorporated in the Gaussian09 software. This study is used to determine various intra-molecular interactions such as hyperconjugation effect

	PTPS	CNSB	FBPS
A			
β_{xxx}	21.267	-426.0796	-558.5837
β_{xxy}	61.6787	429.944	675.8251
β_{XVV}	-41.5645	-622.3115	-544.1882
β _{γγγ}	-300.7555	830.6251	446.6925
β_{zxx}	-19.1115	233.5987	158.2589
β_{xyz}	-0.0065	-26.3195	144.5777
β_{zyy}	122.8723	-51.9927	-177.5535
β_{xzz}	0.4975	-80.3863	-81.3845
β_{yzz}	-37.4266	7.0027	115.0023
β _{zzz}	25.5494	113.2188	-116.5221
a			
α _{xx}	197.1956	323.9428	326.8937
α _{xy}	-71.5587	-104.559	-91.4877
ανν	429.3164	327.923	351.3421
α _{xz}	-58.3440	-11.7996	34.7819
α _{yz}	-38.2214	51.1627	-13.8035
ά _{zz}	178.3933	246.0685	179.5972

Table 2. Calculated hyperpolarizability and polarizability components.

present in the molecules of interest. For the compounds under study, the NBO values are presented in the Table 3. For the title molecules, the interactions due to oxygen atoms in the SO2 group are as follows: LPO12 $\rightarrow \sigma^*(C3-S11)$ is 20.17, LPO12 $\rightarrow \sigma^*(O13-S11)$ is 15.70, LPO12 $\rightarrow \sigma^*(N14-S11)$ is 21.52, LPO13 $\rightarrow \sigma^*(C3-S11)$ is 19.19, LPO13 $\rightarrow \sigma^*(O12-S11)$ is 16.14, LPO13 $\rightarrow \sigma^*(N14\text{-}S11)$ is 21.19 kcal/mol for PTPS; LPO9 $\rightarrow \sigma^*(C3\text{-}S8)$ is 22.21, LPO9 $\rightarrow \sigma^*(S8\text{-}O10)$ is 12.78, LPO9 $\rightarrow \sigma^*(S8-N11)$ is 25.44, LPO10 $\rightarrow \sigma^*(S8-O9)$ is 16.63, LPO10 $\rightarrow \sigma^*(S8-N11)$ is 19.06, LPO10 \rightarrow σ^* (C3-S8) is 22.63 kcal/mol for CNSB and LPO10 \rightarrow σ^* (S8-O9) is 16.60, LPO10 \rightarrow σ^* (S8-N11) is 19.12, LPO10 $\rightarrow \sigma^*($ S8-C3) is 22.67, LPO9 $\rightarrow \sigma^*($ S8-N11) is 25.41, LPO9 $\rightarrow \sigma^*($ S8-O10) is 12.77, LPO10 $\rightarrow \sigma^*$ (S8-C3) is 22.21 kcal/mol for FBPS. Due to benzoxazole oxygen atom, the interactions are as follows: LPO21 $\rightarrow \pi^*(C17-C18)$ is 24.22, LPO21 $\rightarrow \pi^*(C22-N23)$ is 34.02 kcal/mol for PTPS; LPO18 $\rightarrow \pi^*(C14-C15)$ is 24.31, LPO18 $\rightarrow \pi^*(C19-N20)$ is 35.40 for CNSB and LPO18 $\rightarrow \pi^*$ (C14-C15) is 24.39, LPO18 $\rightarrow \pi^*$ (C19-N20) is 35.34 for FBPS. Nitro oxygen atom interactions are as follows: LPO21 $\rightarrow \sigma^*(N7-O22)$ is 19.26, LPO22 $\rightarrow \sigma^*(N7-O21)$ is 19.19, LPO22 $\rightarrow \pi^*(N7-O21)$ is 167.06, LPO32 $\rightarrow \sigma^*(C4-N31)$ is 14.04, LPO32 $\rightarrow \sigma^*(N31-O33)$ is 19.84, LPO33 $\rightarrow \sigma^*(N31-O32)$ is 19.74, LPO33 $\rightarrow \pi^*(N31-O32)$ is 153.04 for CNSB and LPO33 $\rightarrow \pi^*(N31-O32)$ O32) is 153.24, LPO33 $\rightarrow \sigma^*$ (N31-O32) is 19.74, LPO22 $\rightarrow \pi^*$ (N7-O21) is 167.06 for FBPS. The other major interactions are as follows: LPF8 $\rightarrow \sigma^{*}(C7\text{-}F10)$ is 12.77, LPF9 $\rightarrow \sigma^{*}(C7\text{-}F8)$ is 11.54, LPF9 $\rightarrow \sigma^*(C7\text{-}F10)$ is 11.48, LPF10 $\rightarrow \sigma^*(C7\text{-}F8)$ is 12.76, LPN23 $\rightarrow \sigma^*(O21\text{-}C22)$ is 14.27 (PTPS), and LPN20 $\rightarrow \sigma^*$ (C19-O18) is 14.40 (CNSB). The results indicate a variety of hyperconjugate interactions in the molecule itself, which stabilizes the molecule to higher extend. Also, this suggests the intermolecular charge transfer (ICT) possible in the molecules.

The frontier molecular orbitals

The molecular orbital theory is commonly used by chemists to evaluate the reactivity and stability of the compounds.³¹ The frontier molecular orbitals, HOMO and LUMO, play a very important role in this evaluation. More the energy difference between HOMO and LUMO, the band gap will be wide and molecule will be more stable comparatively. The LUMO energy of PTPS, CNSB, and FBPS is -5.295/-5.091/-5.091 eV and HOMO energy of PTPS, CNSB, and FBPS is -8.272/-8.077/-8.288 eV. The energy gap of molecules PTPS, CNSB, and FBPS is found to be 2.977, 2.986, and 3.197 eV, respectively. Figure 6 shows the HOMO and LUMO map of the molecules PTPS, CNSB, and FBPS. Table 4 contains the calculated chemical hardness of molecules PTPS, CNSB, and FBPS. The results indicate that molecule FBPS is harder and less reactive than

Table 3.	Second-order	perturbation	theory	analysis	of Fock	matrix	in NBO	basis	corresponding	to the	intra-molecula	r bonds	of
the title	compound.												

Donor	Туре	ED/e	Acceptor	Туре	ED/e	E(2) ^a	E(j)-E(i) ^b	F(i,j) ^c
3.1. PTPS								
LPF8	π	1.94842	C6–C7	σ^*	0.06272	6.65	0.78	0.065
-	π	1.94842	C7–F9	σ^*	0.11178	6.11	0.65	0.057
-	π	1.94842	C7–F10	σ^*	0.10229	3.53	0.64	0.043
-	n	1.93059	C7–F9	σ^*	0.11178	9.92	0.65	0.072
-	n	1.93059	C7–F10	σ^*	0.10229	12.77	0.64	0.082
LPF9	π	1.94588	C6–C7	σ^*	0.06272	6.69	0.78	0.065
-	π	1.94588	C7–F8	σ^*	0.10312	4.75	0.64	0.050
_	π	1.94588	C7–F10	σ^*	0.10229	4.83	0.64	0.050
-	n	1.92959	C7–F8	σ^*	0.10312	11.54	0.64	0.077
-	n	1.92959	C7–F10	σ^*	0.10229	11.48	0.64	0.077
LPF10	π	1.94825	C6–C7	σ^*	0.06272	6.66	0.78	0.065
-	π	1.94825	C7–F8	σ^*	0.10312	3.54	0.64	0.043
-	π	1.94825	C7–F9	σ^*	0.11178	6.11	0.65	0.057
LPF10	n	1.93073	C7–F8	σ^*	0.10312	12.76	0.64	0.082
-	n	1.93073	C7–F9	σ^*	0.11178	9.96	0.65	0.072
LPO12	σ	1.98129	S11-013	σ^*	0.16629	1.69	1.06	0.039
-	π	1.79616	C3–S11	σ^*	0.20558	20.17	0.44	0.084
-	π	1.79616	S11-013	σ^*	0.16629	7.34	0.56	0.058
-	π	1.79616	S11–N14	σ^*	0.28523	5.25	0.39	0.041
-	n	1.78994	S11-013	σ^*	0.16629	15.70	0.56	0.085
-	n	1.78994	S11–N14	σ^*	0.28523	21.52	0.39	0.083
LPO13	σ	1.98043	S11-012	σ^*_{*}	0.14320	1.83	1.07	0.041
-	π	1.80557	C3-S11	σ^*_{*}	0.20558	19.19	0.44	0.082
-	π	1.80557	S11-012	σ^*_*	0.14320	5.80	0.57	0.052
-	π	1.80557	S11-N14	σ^*_*	0.28523	6.66	0.39	0.047
-	n	1.78052	STI-012	σ^*	0.14320	16.14	0.57	0.087
-	n	1./8052	STI-N14	σ^*	0.28523	21.19	0.39	0.082
LPN14	σ	1.89289	(3-51)	σ^*	0.20558	1.86	0.49	0.028
-	σ	1.89289	511-013	σ^{*}	0.16629	7.74	0.62	0.063
-	σ	1.89289		σ^*	0.02108	1.57	0.91	0.035
-	0	1.09209		n _*	0.35754	4.91	0.57	0.041
	0	1.09209	C13-C20	0 ~*	0.02545	2.50	0.09	0.005
LFUZI	0	1.90929		0 ~*	0.04129	3.39	1.15	0.037
	σ	1.90929	$C_{22} = 1123$	$\frac{0}{\pi^*}$	0.01730	4.90	0.36	0.000
_	π	1.73018	C72_N23	π^*	0.45018	34.02	0.30	0.000
I PN23	π	1.91104	C17_C18	σ^*	0.04129	6 17	0.55	0.050
_	σ	1.91104	021-022	σ^*	0.04125	14 27	0.69	0.000
	0	1.91104	021 022	0	0.00274	14.27	0.05	0.007
3.2. CNSB								
LPO9	σ	1.97872	S8-010	σ^*	0.14183	1.94	1.07	0.042
-	π	1.78913	C3–S8	σ^*	0.23652	22.21	0.40	0.085
-	π	1.78913	S8-010	σ^*	0.14183	9.34	0.56	0.066
-	π	1.78913	S8–N11	σ^*	0.26596	2.29	0.41	0.028
LPO9	n	1.77181	S8-010	σ^*	0.14183	12.78	0.56	0.077
-	n	1.77181	S8–N11	σ^*	0.26596	25.44	0.41	0.092
LPO10	σ	1.98055	S8-09	σ^*_{*}	0.17055	1.53	1.07	0.038
-	π	1.80708	\$8-09	σ^*_{*}	0.17055	16.63	0.57	0.087
-	π	1.80708	S8-N11	σ^*_*	0.26596	19.06	0.41	0.081
-	n	1./8/26	C3-58	σ^*_*	0.23652	22.63	0.41	0.086
-	n	1./8/26	58-09	σ^*	0.17055	5.57	0.57	0.051
- L DNI11	n	1./8/26	58-N11	σ^*	0.26596	5.26	0.41	0.042
LPNII	σ	1.86/52	C3-58	σ^{-*}	0.23652	2.69	0.44	0.032
-	σ	1.80/52	30-U9	σ^*	0.1/055	9.58	0.01	0.069
-	σ	1.80/52	C12-C13	σ. -*	0.02202	4./2	0.90	0.060
-	σ	1.80/52	C12-C13	π^*	0.30823	0./4	0.30	0.04/
	σ	1.00/52		o*	0.02400	1./3	U.89 1 1 2	0.030
LPUIO	σ	1.90999	C14-C15	o*	0.04042	5.50	1.13	0.05/
_	0 	עללטל.ו 1 1 רסכר	C19-N20	σ*	0.02020	2.12 2/ 21	0.26	0.009
_	л —	1.72302 1 73203	C14-C15	π π*	0.44000	24.31	0.50	0.007
_	п	1.72302		п	0.239/4	55.40	0.00	0.099

(continued)

Donor	Туре	ED/e	Acceptor	Туре	ED/e	E(2) ^a	E(j)-E(i) ^b	F(i,j) ^c
LPN20	σ	1.91326	C14–C15	σ^*	0.04042	5.99	0.91	0.067
_	σ	1.91326	O18–C19	σ^*	0.06887	14.40	0.69	0.090
LPO21	σ	1.98068	C6-N7	σ^*	0.11109	4.21	1.06	0.061
-	σ	1.98068	N7-022	σ^*	0.05652	2.66	1.22	0.051
-	π	1.89384	C6–N7	σ^*	0.11109	13.64	0.55	0.078
-	π	1.89384	N7-022	σ^*	0.05652	19.26	0.71	0.106
LPO22	σ	1.98071	C6–N7	σ^*	0.11109	4.19	1.06	0.061
-	σ	1.98071	N7-021	σ^*	0.05657	2.67	1.22	0.051
-	π	1.89408	C6–N7	σ^*	0.11109	13.55	0.55	0.077
-	π	1.89408	N7-021	σ^*	0.05657	19.19	0.71	0.106
-	n	1.43163	N7-021	π^*_*	0.61775	167.06	0.14	0.140
LPCI30	σ	1.99339	C26-C27	σ^*_{ψ}	0.02646	1.26	1.48	0.039
	σ	1.99339	C27-C28	σ^*_*	0.02669	1.25	1.47	0.038
-	π	1.9/315	C26-C27	σ^*_*	0.02646	3.85	0.88	0.052
-	π	1.9/315	C27-C28	σ^*	0.02669	3.85	0.87	0.052
-	n	1.93162	C26-C27	π^*	0.38348	12.07	0.33	0.061
LPO32	σ	1.98060	C4-N31	σ^*	0.10/68	4.17	1.06	0.061
	σ	1.98060	N31-033	σ^*	0.06996	2.//	1.20	0.052
-	π	1.88851	C4-N31	σ^{+}	0.10768	14.04	0.55	0.079
-	π	1.88851	N31-033	σ^{*}	0.06996	19.84	0.69	0.100
LPU33	σ	1.97348		σ^{*}	0.10/68	5.00	1.05	0.000
-	σ	1.97348	N31-032	σ^{*}	0.05850	1./3	1.21	0.041
-	π	1.89375		σ^*	0.10/68	2.76	0.56	0.070
-	п –	1.09373		o -*	0.02008	5.70	0.76	0.049
-	n	1.09575	N21 022	0 ~*	0.03650	19.74	0.72	0.100
_	n	1.44727	N31-032	π π*	0.36799	5 60	0.10	0.140
-		1.44727	101-000	0	0.00990	5.09	0.09	0.004
3.3. FBPS								
C3-S8	σ	1.96026	S8-09	σ^*	0.17063	3.51	0.96	0.054
S8-010	σ	1.98380	S8-09	σ^*	0.17063	2.17	1.26	0.049
_			S8-N11	σ^*	0.26589	2.17	1.10	0.047
S8-N11	σ	1.96410	S8-09	σ^*	0.17063	3.52	1.03	0.056
			S8-010	σ^*	0.14173	3.33	1.03	0.054
S8–O9	σ	1.98146	S8-N11	σ^*	0.26589	2.72	1.10	0.052
C12–C13	σ	1.97411	C14–N20	σ^*	0.02054	5.54	1.16	0.072
C14–C15	σ	1.97626	C15–C16	σ^*	0.02124	4.36	1.28	0.067
	π	1.60854	C12–C13	π^*	0.36881	19.68	0.29	0.067
			C16–C17	π^*	0.32553	18.73	0.29	0.067
			C19–N20	π^*	0.25929	9.96	0.27	0.048
C19–N20	σ	1.98680	C13–C14	σ^*	0.02223	5.84	1.45	0.082
	π	1.88730	C14–C15	π^*	0.04048	15.54	0.35	0.072
018–C19	σ	1.98911	C15–C16	σ^*	0.02124	5.01	1.47	0.077
N7-021	π	1.98467	N7–021	π^*	0.61785	7.25	0.32	0.052
C26–C27	π	1.98032	C24–C25	π^*	0.35399	20.68	0.30	0.070
			C28–C29	π^*	0.32944	18.68	0.29	0.066
C27–C28	σ	1.98246	C26–C27	σ^*	0.02744	3.30	1.28	0.058
N31-032	π	1.98520	N31-O32	π^*	0.58815	6.54	0.34	0.050
LPO9	π	1./8923	C3-58	σ^*_{ψ}	0.236/0	22.21	0.40	0.085
			S8-010	σ^*_{ψ}	0.14173	9.34	0.56	0.066
	n	1.//21/	S8-010	σ^*	0.14173	12.//	0.56	0.077
10010		1 00 000	58-NTT	σ^*	0.26589	25.41	0.41	0.092
LPOID	π	1.80689	58-09	σ^{\cdot}	0.17063	16.60	0.57	0.087
		1 70710	58-NTT	σ^{+}	0.26589	19.12	0.41	0.081
	n	1./8/10	C3-58	σ^{*}	0.23670	22.67	0.41	0.080
			30-U9 C0 N111	σ· ~*	0.1/003	5.0Z	0.57	0.051
I DNI11	-	1 06000		σ· ~*	0.20209	5.22	0.41	0.042
LMINTI	σ	1.80893	30-U9	σ· _*	0.1/063	9.57	0.01	0.069
- LDO19	-	1 7000	C12-C13	π· -*	0.20001	74.0 24.20	0.30	0.046
LPUIO	π	1./2380	C14-C15	π· -*	0.448/0 0.25020	24.39	0.30	0.087
	- 5	1 01 2 1 0	C19-INZU	π ~*	0.23929	55.54 6 00	0.55	0.099
	2	01615.1	018-010	0 ~*	0.04040	14 40	0.91	0.007
	_		010-019	U	0.00077	14.40	0.09	(continue)
								(continued)

Table 3. Continued.

Table 3. Continued.

Donor	Туре	ED/e	Acceptor	Туре	ED/e	E(2) ^a	E(j)-E(i) ^b	F(i,j) ^c
LPO21	π	1.98068	C6-N7	σ^*	0.11103	13.63	0.55	0.078
_			N7-022	σ^*	0.05651	19.25	0.71	0.106
LPO22	π	1.89413	C6-N7	σ^*	0.11103	13.54	0.55	0.077
_			N7-021	σ^*	0.05658	19.20	0.71	0.106
	n	1.43167	N7-021	π^*	0.61785	167.06	0.14	0.140
LPF30	π	1.96802	C26–C27	σ^*	0.02744	6.59	0.96	0.071
-			C27–C28	σ^*	0.02767	6.60	0.96	0.071
	n	1.91678	C26–C27	π^*	0.37030	20.33	0.42	0.089
LPO32	π	1.88855	C4–N31	σ^*	0.10768	14.03	0.55	0.079
			N31-O33	σ^*	0.06999	19.83	0.69	0.106
LPO33	π	1.89373	C4-N31	σ^*	0.10768	11.02	0.56	0.070
			N31-032	σ^*	0.05854	19.74	0.72	0.108
	n	1.44694	N31-032	π^*	0.58815	153.24	0.16	0.140

^aE(2) means energy difference of hyper-conjugative interactions (stabilization energy in kJ/mol).

^bEnergy difference (a.u.) between donor and acceptors i and j NBO orbitals.

^cF(i,j) is the Fock matrix elements (a.u.) between i and j NBO orbitals.

Figure 6. Frontier MO's of the compounds.

Table 4. The calculated global reactivity properties from	DFT	FT.
--	-----	-----

	Energy (eV)					
Global reactivity descriptors	PTPS	TCNSB	FBPS			
HOMO energy	-8.272	-8.077	-8.288			
LUMO energy	-5.295	-5.091	-5.091			
Band gap	2.977	2.986	3.197			
Ionization potential I=-E _{HOMO}	8.272	8.077	8.288			
Electron affinity $A = -E_{LUMO}$	5.295	5.091	5.091			
$\mu = -(I + A)/2$	-6.784	-6.584	-6.690			
Global hardness $\eta = (I - A)/2$	1.489	1.493	1.599			
Electrophilicity $\omega = \mu^2/2\eta$	15.454	14.517	13.995			
Electro negativity $\chi = (I + A)/2$	6.784	6.584	6.690			

molecules PTPS and CNSB. The computed electronegativity (χ) values for the molecules PTPS (6.784), CNSB (6.584), and FBPS (6.690) are given in Table 4. FBPS has higher electronegativity than PTPS and CNSB. The electrophilicity values for the molecules PTPS, CNSB, and FBPS were found to be 15.454, 14.517, and 13.995 eV as shown in Table 4. Among the molecules, FBPS is maximum nucleophile, while PTPS is maximum electrophile. The ionization potential and electron affinity of molecules calculated in gas phase values are 8.272/5.295, 8.077/5.091, and 8.288/ 5.091 eV, respectively.

Light harvesting studies

Light harvesting efficiency studies can be used to screen whether an organic compound can be used as a photosensitizer to convert light energy into electric energy in a dye-sensitized solar cell. This is determined from the electronic spectral analysis, which is generated by time-dependent DFT analysis using CAM-B3LYP functional using CC-pVDZ basis set. Oscillator strength corresponding to λ max can provide a direct link between the electronic spectra and LHE as LHE = $1-10^{-f}$, where f is the oscillator strength.³²⁻³⁴ For PTPS, λ max is 287.12 nm, f=1.1824, and LHE = 0.9342. For CNSB, λ max is 314.65 nm, f=0.0001, and LHE = 0.0023. For FBPS, λ max is 314.7 nm, f=0.0001, and LHE = 0.0023. The second and third compounds contain halogen, which is an electron-withdrawing group attached to the phenyl ring which is linked to the benzoxazole moiety.^{34,35-38} This may hamper the LHE of CNSB and FBPS. LHE of PTPS is 0.9342 means that the dye can transfer 93.42% of light energy to electrical energy and this can be used along with other dyes which are presently used as photosensitizers in DSSC's.

Conclusions

Geometry of the molecules understudy was explained using the experimental and theoretical methods. Scaled IR and Raman spectra show good agreement with the experimental spectra followed by vibrational assignment. MESP gives information about the electronic distribution, and it is found that they are not uniformly distributed in the molecules of our study, paving the way to show excellent physico-chemico and optical properties. Hyperpolarizability studies provide the NLO data, and it is found that all the three molecules are having exceptionally good NLO properties compared to the standard materials. According to molecular docking studies, the three sulfonamidobenzoxazoles can be useful in designing of new potent inhibitors of Topoisomerase II enzyme, as lead compounds. Light harvesting studies of the compounds are reported. LHE of PTPS is 0.9342 means that the dye can transfer 93.42% of light energy to electrical energy and this can be used along with other dyes which are presently used as photosensitizers in DSSC's.

ORCID

Renjith Thomas (D) http://orcid.org/0000-0003-0011-633X

References

- M. Prudhomme, J. Guyot, and G. Jeminet, "Semi-Synthesis of A23187 (Calcimycin) Analogs. IV. Cation Carrier Properties in Mitochondria of Analogs with Modified Benzoxazole Rings. Antimicrobial Activity," *The Journal of Antibiotics* 39, no. 7 (1986): 934–37.
- I. Yildiz-Oren, B. Tekiner-Gulbas, I. Yalcin, O. Temiz-Arpaci, E. Aki-Sener, and N. Altanlar, "Synthesis and Antimicrobial Activity of New 2-[p-Substituted-Benzyl]-5-[Substituted-Carbonylamino]Benzoxazoles," Archiv Der Pharmazie 337, no. 7 (2004): 402–10.
- 3. T. Ertan-Bolelli, K. Bolelli, Y. Musdal, I. Yildiz, E. Aki-Yalcin, B. Mannervik, and I. Yalcin, "Design and Synthesis of 2-Substituted-5-(4-Trifluoromethyl Phenyl Sulphonamido) Benzoxazole Derivatives as Human GST P1-1 Inhibitors," *Artificial Cells, Nano Medicine, and Biotechnology* 46, no. 3 (2018): 510–17.
- 4. T. Ertan-Bolelli, I. Yildiz, and S. Ozgen-Ozgacar, "Synthesis, Molecular Docking and Antimicrobial Evaluation of Novel Benzoxazole Derivatives," *Medicinal Chemistry Research* 25, no. 4 (2016): 553–67.
- 5. T. Ertan-Bolelli, K. Bolelli, S. Okten, F. Kaynak-Onurdag, E. Aki-Yalcin, and I. Yalcin, "Synthesis, Antimicrobial Activities of New Sulfonamidobenzoxazoles and Molecular Docking Studies on *Escherichia coli* TEM-1 β -Lactamase," *Croatica Chemica Acta* 90, no. 1 (2017): 67–74.
- M. Yamashita, T. Tahara, S. Hayakawa, H. Matsumoto, S.-I. Wada, K. Tomioka, and A. Iida, "Synthesis and Biological Evaluation of Histone Deacetylase and DNA Topoisomerase II-Targeted Inhibitora," *Bioorganic & Medicinal Chemistry* 26, no. 8 (2018): 1920–28.

1578 🕒 Y. SHEENA MARY ET AL.

- Y. Sheena Mary, Nourah Z. Alzoman, Vidya V. Menon, Ebtehal S. Al-Abdullah, Ali A. El-Emam, C. Yohannan Panicker, Ozlem Temiz-Arpaci, Stevan Armaković, Sanja J. Armaković, and C. Van Alsenoy, "Reactive, Spectroscopic and Antimicrobial Assessments of 5-[(4-Methylphenyl)Aceta,Odp]-2-(4-Tert-Butylphenyl)Benzoxazole: Combined Experimental and Computational Study," *Journal of Molecular Structure* 1128 (2017): 694–706.
- V. V. Aswathy, Sabiha Alper-Hayta, Gözde Yalcin, Y. Sheena Mary, C. Yohannan Panicker, P. J. Jojo, Fatma Kaynak-Onurdag, Stevan Armaković, Sanja J. Armaković, Ilkay Yildiz, et al. "Modification of Benzoxazole Derivative by Bromne-Spectroscopic, Antibacterial and Reactivity Study Using Experimental and Theoretical Procedures," *Journal of Molecular Structure* 1141 (2017): 495–511.
- Asha Chandran, Hema Tresa Varghese, Y. Sheena Mary, C. Yohannan Panicker, T. K. Manojkumar, Christian Van Alsenoy, and G. Rajendran, "FT-IR, FT-Raman and Computational Study of (E)-N-Carbamimidoyl-4-((4-Methoxybenzylidene)Amino)Benzene Sulfonamide," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 92 (2012): 84–90.
- A. Chandran, Y. S. Mary, H. T. Varghese, C. Y. Panicker, P. Pazdera, G. Rajendran, and N. Babu, "FT-IR, FT-Raman Spectroscopy and Computational Study of N-Carbamimidoyl-4-{[(E)-((2-Hydroxyphenyl)Methylidene]Amino} Benzenesulfonamide," *Journal of Molecular Structure* 992, no. 1–3 (2011): 77–83.
- 11. P. Shafieyoon, E. Mehdipour, and Y. S. Mary, "Synthesis, Characterization and Biological Investigation of Glycine-Based Sulfonamide Derivative and Its Complex: Vibration Assignment, HOMO-LUMO Analysis, MEP and Molecular Docking," *Journal of Molecular Structure* 1181 (2019): 244–52.
- 12. R. G. Parr, and W. Yang, Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry (New York: Oxford Science Publications, 1995).
- 13. W. Koch, and M. C. Holthausen, A Chemist's Guide to Density Functional Theory (Verlag: Wiley, 2001), 239–263.
- 14. G. M. Wynne, S. P. Wren, P. D. Johnson, P. D. Price, O. De Moor, G. Nugent, R. Storer, R. J. Pye, and C. R. Dorgan, *Treatment of Duchenne Muscular Dystrophy* (US Patent 8,518,980 B2, August 27, 2013).
- T. Ertan-Bolelli, Y. Musdal, K. Bolelli, S. Yilmaz, Y. Aksoy, I. Yildiz, E. Aki-Yalcin, and I. Yalcin, "Synthesis and Biological Evaluation of 2-Substituted-5-(4-Nitrophenylsulfonamido)Benzoxazoles as Human GST P1-1 Inhibitors and Description of the Binding Site Features," Chemmedchem 9, no. 5 (2014): 984–92.
- G. M. Wynne, S. P. Wren, P. D. Johnson, P. D. Price, O. De Moor, G. Nugent, R. Storer, R. J. Pye, and C. R. Dorgan, "Treatment of Duchenne muscular dystrophy" (US Patent 2009-075938, filed Feb 9, 2007, and issued Mar 19, 2009).
- 17. R. Dennington, T. Keith, and J. Millam, *GaussView* (Version 5) (Shawnee Mission, KS: Semichem Inc., 2009).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson, *Gaussian 09* (Revision B.01) (Wallingford CT: Gaussian Inc., 2010).
- 19. J. B. Foresman, *Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian*, edited by E. Frisch, 2nd ed. (Pittsburg, PA: Gaussian, 1996).
- 20. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (New York: Wiley, 1994).
- 21. Schrödinger, Schrödinger Release 2018-2 (New York: LLC, 2018).
- 22. Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic, Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, et al. "Glide: A New Approach for Rapid, Accurate Docking and Scoring: Method and Assessment of Docking Accuracy," *Journal of Medicinal Chemistry* 47, no. 7 (2004): 1739–49.
- 23. Schrödinger LLC. New York, USA: Schrödinger Inc., 2008. http://www.schrödinger.com. Accessed 2nd January, 2019.
- 24. F. Cortes, N. Pastor, S. Mateos, and I. Dominguez, "Roles of DNA Topoisomerases in Chromosome Segregation and Mitosis," *Mutation Research/Reviews in Mutation Research* 543 (2003): 59–66.
- 25. J. L. Nitiss, and J. C. Wang, "Mechanisms of Cell Killing by Drugs That Trap Covalent Complexes between DNA Topoisomerases and DNA," *Molecular Pharmacology* 50, no. 5 (1996): 1095–102.
- 26. A. K. McClendon, and N. Osheroff, "DNA Topoisomerase II, Genotoxicity, and Cancer," *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis* 623, no. 1–2 (2007): 83–97.
- Y. R. Wang, S. F. Chen, C. C. Wu, Y. W. Liao, T. S. Lin, K. T. Liu, Y. S. Chen, T. K. Li, T. C. Chien, and N. L. Chan, "Producing Irreversible Topoisomerase II-Mediated DNA Breaks by Site-Specific Pt (II)-Methionine Coordination Chemistry," *Nucleic Acids Research* 45, no. 18 (2017): 10861–71.
- P. Politzer, J. S. Murray, and Z. Peralta-Inga, "Molecular Surface Electrostatic Potentials in Relation to Noncovalent Interactions in Biological Systems," *International Journal of Quantum Chemistry* 81 (2001): 676–84.

- D. R. Roy, U. Sarkar, P. K. Chattaraj, A. Mitra, J. Padmanabhan, R. Parthasarathi, V. Subramanian, S. V. Damme, and P. Bultinck, "Analyzing Toxicity through Electrophilicity," *Molecular Diversity* 10, no. 2 (2006): 119–31.
- Y. S. Mary, K. Raju, C. Y. Panicker, A. A. Al-Saadi, and T. Thiemann, "Molecular Conformational Analysis, Vibrational Spectra, NBO Analysis and First Hyperpolarizability of (2E)-3-(3-Chlorophenyl)Prop-2-Enoic Anhydride Based on Density Functional Theory Calculations," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014): 471–83.
- 31. K. Fukui, "Role of Frontier Orbitals in Chemical Reactions," Science 218, no. 4574 (1982): 747-54.
- 32. C. Curutchet and B. Mennucci, "Quantum Chemical Studies of Light Harvesting," *Chemical Reviews* 117, no. 2 (2017): 294–343.
- D. A. Thadathil, S. Varghese, K. B. Akshaya, R. Thomas, and A. Varghese, "An Insight into Photophysical Investigation of (E)-2-Fluoro-N'-(1-(4-Nitrophenyl) Ethylidene)Benzohydrazide through Solvatochromism Approaches and Computational Studies," *Journal of Fluorescence* 29, no. 4 (2019): 1013–27. https://doi.org/ 10.1007/s10895-019-02415-y.
- V. S. Kumar, Y. S. Mary, K. Pradhan, D. Brahman, Y. Mary, R. Thomas, M. S. Roxy, and C. Van Alsenoy, "Synthesis, Spectral Properties, Chemical Descriptors and Light Harvesting Studies of a New Bioactive Azo Imidazole Compound," *Journal of Molecular Structure* 1199 (2020): 127035. https://doi.org/10.1016/j.molstruc.2019.127035
- 35. S. Beegum, Y. S. Mary, Y. S. Mary, R. Thomas, S. Armaković, S. J. Armaković, J. Zitko, M. Dolezal, and C. Van Alsenoy, "Exploring the Detailed Spectroscopic Characteristics, Chemical and Biological Activity of Two Cyanopyrazine-2-Carboxamide Derivatives Using Experimental and Theoretical Tools," *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* 224 (2020): 117414. https://doi.org/10.1016/j.saa.2019. 117414.
- 36. Y. Sheena Mary, Pankaj B. Miniyar, Y. Shyma Mary, K. S. Resmi, C. Yohannan Panicker, Stevan Armaković, Sanja J. Armaković, Renjith Thomas, and B. Sureshkumar, "Synthesis and Spectroscopic Study of Three New Oxadiazole Derivatives with Detailed Computational Evaluation of Their Reactivity and Pharmaceutical Potential," Journal of Molecular Structure 1173 (2018): 469–80.
- P. R. K. Rani, Y. S. Mary, A. Fernandez, S. A. Priya, Y. S. Mary, and R. Thomas, "Single Crystal XRD, DFT Investigations and Molecular Docking Study of 2-((1,5-Dimethyl-3-Oxo-2-Phenyl-2,3-Dihydro-1H-Pyrazol-4yl)Amino)Naphthalene-1,4-Dione as a Potential anti-Cancer Lead Molecule," Computational Biology and Chemistry 78 (2019): 153–64.
- 38. Y. Sheena Mary, Y. Shyma Mary, Renjith Thomas, B. Narayana, S. Samshuddin, B. K. Sarojini, Stevan Armaković, Sanja J. Armaković, and Girinath G. Pillai, "Theoretical Studies on the Structure and Various Physico-Chemical and Biological Properties of a Terphenyl Derivative with Immense anti-Protozoan Activity," *Polycyclic Aromatic Compounds* (2019): 1. https://doi.org/10.1080/10406638.2019.1624974