Vol. 47 No. 2/2000

481-486

QUARTERLY

Communication

QSARs of some novel isosteric heterocyclics with antifungal activity $^{\star \Im}$

Ismail Yalçìn[⊠], İlkay Ören, Özlem Temiz and Esin Akì Şener

Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, TR-06100 Tandogan Ankara-Turkey

Received: 25 October, 1999; accepted: 25 April, 2000

Key words: QSAR analysis, isosteric heterocyclics, antifungal activity

QSAR analysis of a set of previously synthesized 2,5,6-trisubstituted benzoxazole, benzimidazole and 2-substituted oxazolo(4,5-b)pyridine derivatives tested for growth inhibitory activity against *Candida albicans*, was performed by using the computer-assisted multiple regression procedure. The activity contributions for either heterocyclic ring systems or substituent effects of these compounds were determined from the correlation equation and the predictions for the lead optimization were described. The resulting QSAR revealed that the oxazolo(4,5-b)pyridine ring system with the substitution of a benzyl moiety at position 2 was the most favourable structure among the heterocyclic nuclei. Moreover, the fifth position in the fused ring system is found more significant than the other positions in improving the activity.

Most fungi are completely resistant to the action of antimicrobial drugs. Only a few substances have been discovered which exert an inhibitory effect on the fungi pathogenic for man, and most of these are relatively toxic (Meyers *et al.*, 1976). Consequently, spurred by the need of new antifungal agents and the fact that many effective antimicrobial drugs possess heterocyclic systems in their structure, we synthesized some novel derivatives of benzoxazoles, benzimidazoles, oxazolo(4,5-b)pyridines and

^{*}Presented at the 7th International Symposium on Molecular Aspects of Chemotheraphy, September, 1999, Gdańsk, Poland.

[•]We would like to thank the Research Fund of Ankara University (Grant No. 92-03-00-02) for the financial support of this research.

 $^{^{\}bowtie}$ To whom correspondence should be addressed.

Abbreviations: MIC, minimum inhibitory concentration; MVC, multi variable analysis.

benzothiazoles during the last few years (Yalçin *et al.*, 1990; 1992; Ören, 1995; Ören *et al.*, 1998; Mrozek *et al.*, 1999).

The synthesized compounds **1–61** used in this QSAR analysis indicated antifungal activity of MIC (minimum inhibitory concentration) values between $6.25-50 \ \mu g/ml$ against *Candida albicans*. Clotrimazole, oxiconazole and haloprogin were also used as standard drugs in order to compare the antifungal activity of these compounds. The observed data for the antifungal activity of the synthesized compounds and the standard drugs were found as given below (Ören, 1995):

Synthesized Compounds:	Observed MIC values
1-61	$6.2550\mu\mathrm{g/ml}$
Standard Drugs:	Observed MIC values
Clotrimazole	$6.25\mu\mathrm{g/ml}$
Oxiconazole	$6.25\mu{\rm g/ml}$
Haloprogin	$3.12\mu\mathrm{g/ml}$

In this study, QSAR analysis of some novel antifungal benzoxazoles, benzimidazoles and oxazolo(4,5-b)pyridines 1-61 (Fig. 1) was performed by the MVA (multi variable analysis) technique.

Figure 1.

X: =CH-, =N-

Y: -O-, -NH-

Z: -, -CH₂-, -C₂H₄-, -CH₂O-, -CH₂S-

R: -H, -Cl, -Br, -F, -NO₂, -NH₂, -CH₃, -C(CH₃)₃, -C₂H₅, -OCH₃, -NHCH₃, -NHCOCH₃,

 $\mathbf{R}_1\!\!:$ –H, –Cl, –NO2, –NH2, –COOCH3

 $\mathrm{R}_2:$ –H, $-\mathrm{NO}_2$

EXPERIMENTAL SECTION

The MVA approach in QSAR analysis has been most widely and effectively used for theoretical drug design due to various physicochemical (electronic, steric and hydrophobic) parameters and structural indicator parameters used together (Hansch & Fujita, 1964; 1969).

The assumption can be formulated as given in Eqn. 1:

$$\log 1/C = \sum a_i I_i + \sum b_i X_i + c \qquad \text{Eqn. 1}$$

where I_i is the structural indicator parameter and X_i is the physicochemical variable.

In this study, the model is based on the *in vi*tro activity of certain 2,5,6-trisubstituted benzoxazole, benzimidazole and 2-substituted oxazolo(4,5-b)pyridine derivatives 1-61against *C. albicans*, where C is the MIC value expressed in molar concentration units (Table 1).

The variables used as descriptors in the analysis are electronic, steric and structural parameters. The structural indicator variable Ix expresses the replacement of -CH= by the isosteric group -N= in the six membered ring of the fused ring system. Ix is defined as 1 for -N= and 0 for -CH= in the compounds. The other indicator variable Iz has a value of 1 for the presence of a methylene group and 0 for its absence between the *p*-substituted phenyl moiety and the fused ring system in position 2. The indicator variable IR₂ has a value of 1 for a nitro group and 0 for a hydrogen atom at position 6 in the fused ring system (see Table 2).

Physicochemical parameters taken into consideration in QSAR study are F (field effect) as electronic influences and Verloop's STERIMOL parameters (L and B₄) for the steric interactions of the substituents R and R₁ (Hansch & Leo, 1979). L is defined as the length of a substituent along the axis of its substitution to the parent skeleton. B4 is defined as the maximum width of the substituent and might provide a better understanding of steric requirements in ligand-receptor interactions. Electronic effect of the

Table 1	. The str	ucture	and <i>in</i>	vitro	antifungal	activity	of the	analyzed	compound	ls 1-61	against
C. albic	ans										

Comp. No:	х	Y	Z	R	Rı	R ₂	MICª µg/ml	Сь
1	СЦ	0		u	ц	ч	25	1.28×10^{-4}
2	CH	0	-	C(CH-)	н Н	н	25	9.96x10 ⁻⁵
3	СН	0		NH.	H H	н	25	1.19×10^{-4}
4	CH	õ	_	NHCH	н	н	25	1.116×10^{-4}
5	CH	õ	-	CaHe	CI	н	25	9.71×10^{-5}
6	CH	õ	-	NHCOCH	CI	н	25	8.73x10 ⁻⁵
7	CH	ŏ	-	NHCH,	Cl	н	25	9.67×10^{-5}
8	CH	ŏ	-	Cl	CI	Н	25	9.47x10 ⁻⁵
9	CH	õ	-	NO ₂	Cl	Н	25	9.11x10 ⁻⁵
10	CH	Õ	-	Н	NO ₂	Н	12.5	5.23x10 ⁻⁵
11	CH	Ō	-	CH ₃	NO_2	Н	12.5	4.92x10 ⁻⁵
12	CH	0	-	$C(CH_3)_3$	NO_2	Н	12.5	4.22x10 ⁻⁵
13	CH	0	-	NH ₂	NO ₂	Н	12.5	4.9x10 ⁻⁵
14	CH	0		Cl	NO_2	Н	12.5	4.55x10 ⁻⁵
15	CH	0	-	Br	NO ₂	Н	12.5	3.93x10 ⁻⁵
16	CH	0	-	C_2H_5	NH_2	Η	25	1.05×10^{-4}
17	CH	0	-	F	$\rm NH_2$	Н	25	1.097x10 ⁻⁴
18	CH	0	-	$N(CH_3)_2$	NH_2	Н	25	9.88x10 ⁻⁵
19	CH	0	-	CH_3	CH3	Н	25	1.12×10^{-4}
20	CH	Ο	-	C_2H_5	CH_3	Н	25	1.055×10^{-1}
21	CH	0	-	OCH ₃	CH3	Н	25	1.046×10^{-1}
22	CH	0	-	F	CH_3	Н	25	1.101x10 ⁻⁴
23	CH	0	-	NHCOCH ₃	CH_3	Н	25	9.398x10 ⁻⁵
24	CH	О	-	NHCH ₃	CH_3	Н	25	1.05x10
25	CH	0	-	$N(CH_3)_2$	CH3	H	25	9.92x10 ⁻³
26	Ν	0	-	CH_3	Н	Н	12.5	5.95x10 ⁻³
27	Ν	0	-	C_2H_5	Н	H	12.5	5.58x10 ⁻⁵
28	Ν	0	-	OCH ₃	Н	H	12.5	5.53x10 ⁻⁵
29	N	0	-	OC ₂ H ₅	H	H	12.5	5.208x10 ⁻⁵
30	N	0	-	NH ₂	H	H	12.5	5.924x10 ⁻⁵
31	N	0	-	NO ₂	H	H	12.5	5.18/XIU 5.0810 ⁻⁵
32	СН	0	CH ₂	H	H	H	12.5	5.98X10 5.9210 ⁻⁵
33	CH	0	CH ₂	OCH ₃	H	H	12.5	5.23X10 5.122m10 ⁻⁵
34	CH	0	CH ₂	CI NO	п	п	12.5	J.133X10 4.02×10 ⁻⁵
35	CH	0	CH ₂	NU ₂		л u	12.5	4.92X10 5.12×10 ⁻⁵
30	СП	0	CH ₂		CI	u u	12.5	4.57×10 ⁻⁵
39	CH	0	CH ₂	Br	CI	н	12.5	3.89x10 ⁻⁵
30	СН	0	CH ₂	NO	Cl	н	12.5	4 33x10 ⁻⁵
40	СН	0	CH ₂	H H	NO	н	6.25	2.46×10^{-5}
40	СН	ŏ	CH ₂	OCH,	NO	н	6.25	2.2×10^{-5}
42	CH	õ	CH ₂	Br	NO ₂	Н	6.25	1.88x10 ⁻⁵
43	СН	õ	CH ₂	Cl	NO	н	6.25	2.166x10 ⁻⁵
44	СН	ŏ	CH ₂	NO ₂	NO ₂	Н	6.25	2.09x10 ⁻⁵
45	СН	Ō	CH ₂ O	Н	CH	Н	25	1.046×10^{-4}
46	CH	0	CH ₂ O	Н	Н	NO_2	50	1.85x10 ⁻⁴
47	CH	0	CH ₂ O	Н	C1	NO_2	50	1.64×10^{-4}
48	CH	0	CH ₂ O	Cl	Cl	NO_2	50	1.475x10 ⁻⁴
49	CH	0	CH_2S	Н	NO_2	Н	12.5	4.37x10 ⁻⁵
50	CH	0	CH ₂ S	Н	CH3	Н	25	9.795x10 ⁻⁵
51	Ν	0	CH ₂ O	Н	Н	Н	12.5	5.495x10 ⁻⁵
52	Ν	0	CH_2O	Cl	Н	Н	12.5	4.797x10 ⁻⁵
53	CH	NH	CH_2O	Cl	CH_3	Н	25	9.18x10 ⁻⁵
54	CH	NH	CH_2S	Н	NO_2	Н	12.5	4.385x10 ⁻⁵
55	CH	NH	CH_2S	Н	CH_3	Н	25	9.795x10 ⁻⁵
56	CH	0	CH ₂ O	Н	COOCH ₃	Н	25	8.83x10 ⁻²
57	CH	0	CH2O	C1	COOCH ₃	Н	25	7.87x10 ⁻⁵
58	CH	NH	CH ₂ O	Cl	COOCH ₃	Н	25	7.907x10
59	CH	NH	CH_2S	H	COOCH ₃	H	25	8.39x10
60	CH	0	C_2H_4	H	NO ₂	H	12.5	4.667x10 ⁻⁵
61	N	0	C_2H_4	Н	Н	Н	12.5	J.J&JX10

^aminimum inhibition concentration, ^bMIC value expressed in molar concentration

Table 2. Parameters used in the best fitted equation

Comp. No:	Ix	Lz	I _{R2}	F_{R^1}	$\mathbf{B4}_{\mathbf{R1}}$	L_{R^1}	Observed log 1/C	Calculated log 1/C	Residuals
1	0	0	0	0	1	2.06	3.892	3.951	-0.059
2	0	0	0	0	1	2.06	4.001	3.951	0.050
3	0	0	0	0	1	2.06	3.924	3.951	-0.027
4	0	0	0	0	1	2.06	3.952	3.951	0.001
5	0	0	0	0.41	1.8	3.52	4.013	4.026	-0.013
6	0	0	0	0.41	1.8	3.52	4.059	4.026	0.033
7	0	0	0	0.41	1.8	3.52	4.015	4.026	-0.011
8	0	0	0	0.41	1.8	3.52	4.024	4.026	-0.002
9	0	0	0	0.41	1.8	3.52	4.040	4.026	0.014
10	0	0	0	0.67	2.44	3.44	4.282	4.341	-0.059
11	0	0	0	0.67	2.44	3.44	4.308	4.341	-0.033
12	0	0	0	0.67	2.44	3.44	4.375	4.341	0.034
13	0	0	0	0.67	2.44	3.44	4.310	4.341	-0.031
14	0	0	0	0.67	2.44	3.44	4.342	4.341	0.001
15	0	0	0	0.67	2.44	3.44	4.406	4.341	0.065
16	0	0	0	0.02	1.84	2.93	3.979	3.981	-0.002
17	0	0	0	0.02	1.84	2.93	3960	3.981	-0.021
18	0	0	0	0.02	1.84	2.93	4.005	3.981	0.024
19	0	0	0	-0.04	2.04	3.0	3.930	3.788	-0.038
20	. 0	0	0	-0.04	2.04	3.0	3.977	3.988	-0.011
21	0	0	0	-0.04	2.04	3.0	3.958	3 988	-0.008
22	0	0	0	-0.04	2.04	3.0	4 027	3 988	0.039
23	0	0	Ő	-0.04	2.04	3.0	3 979	3 988	-0.009
25	0	Ő	Ő	-0.04	2.04	3.0	4 004	3 988	0.016
26	1	õ	õ	0	1	2.06	4 225	4.262	-0.037
27	1	õ	õ	õ	1	2.06	4.253	4.262	-0.009
28	1	õ	õ	0	1	2.06	4.257	4.262	-0.005
29	1	0	0	0	1	2.06	4.283	4.262	0.021
30	1	0	0	0	1	2.06	4.227	4.262	-0.035
31	1	0	0	0	1	2.06	4.285	4.262	0.023
32	0	1	0	0	1	2.06	4.223	4.276	-0.053
33	0	1	0	0	1	2.06	4.282	4.276	0.006
34	0	1	0	0	1	2.06	4.290	4.276	0.014
35	0	1	0	0	1	2.06	4.308	4.276	0.032
36	0	1	0	0.41	1.8	3.52	4.290	4.351	-0.061
37	0	1	0	0.41	1.8	3.52	4.340	4.351	-0.011
38	0	1	0	0.41	1.8	3.52	4.410	4.351	0.059
39	0	1	0	0.41	1.8	3.52	4.363	4.351	0.012
40	0	1	0	0.67	2.44	3.44	4.609	4.667	-0.058
41	0	1	0	0.67	2.44	3.44	4.657	4.667	-0.010
42	0	1	0	0.67	2.44	3.44	4.725	4.667	0.058
43	0	1	0	0.67	2.44	3.44	4.664	4.667	-0.003
44	0	1	0	0.67	2.44	3,44	4.680	4.667	0.013
45	0	0	0	-0.04	2.04	3.0	3.980	3.988	-0.008
40	0	0	1	0 41	1 9	2.00	3.732	3.733	-0.001
47	0	0	1	0.41	1.8	3.52	3.783	3.808	-0.023
40	0	0	1	0.41	1.0	3.52	4 3 5 9	1 3 4 1	0.025
49 50	0	0	0	0.07	2.44	3.44	4.339	3 988	0.013
51	1	0	0	-0.04	2.04	2.06	4.260	4 262	-0.0021
52	1	0	0	0	1	2.00	4.200	4.262	0.057
53	0	0	ñ	-0.04	2.04	3.0	4 037	3.988	0.049
54	0	0	ñ	0.67	2.44	3.44	4.358	4.341	0.017
55	ð	0	0	-0.04	2.04	3.0	4,009	3,988	0.021
56	Ő	0	ő	0.33	3.36	4.85	4.054	4,090	-0.036
57	õ	õ	õ	0.33	3,36	4.85	4.104	4.090	0.014
58	ŏ	õ	õ	0.33	3.36	4.85	4.102	4.090	0.012
59	0	0	0	0.33	3,36	4.85	4.076	4.090	-0.014
60	0	0	0	0.67	2.44	3.44	4.331	4.341	-0.010
61	1	0	0	0	1	2.06	4.253	4.262	-0.009

Table 3. Predicted log 1/C values of some additional analog compounds (62–68) compared with their observed values by using the Eqn. 2

Comp. No:	Х	Y	Z	R	R ₁	R ₂	MIC µg/ml	Observed log1/C	Predicted Log1/C	Residuals
62	CH	0	-	Br	NH_2	Н	25	4.110	3.972	0.138
63	CH	0	CH_2	Br	Н	Н	12.5	4.360	4.273	0.087
64	CH	0	CH_2O	Cl	Н	Н	25	4.016	3.953	0.063
65	CH	NH	CH_2O	Н	NO_2	Н	12.5	4.283	4.339	0.054
66	CH	NH	CH_2O	Cl	Н	Н	25	4.015	3.953	0.062
67	CH	NH	CH_2S	Н	Cl	Н	25	4.041	4.026	0.015
68	CH	NH	C_2H_4	Н	Н	Н	25	4.078	4.087	0.089

substituents, expressed in term of F, is found to be important in determining the activity, as it is predictive in electrophilic reactions of the drugs with the nucleophilic functions of biomolecules.

The correlation equation was performed using the Stepwise Technique by entering and removing the F level as 4.0 for each variable in the regression.

The overall F test value for the calculated best equation (Eqn. 2) was found as 471.69 which is statistically significant at the level of probability P < 0.001 (Fig. 2), whereas the tabulated F value is 4.442.

On the other hand, the predictive power of the performed QSAR model was also examined by calculating the q^2 (predicted r^2) value of some additional synthesized analog compounds (**62–68**) and the Eqn. 2 was found significant for the lead optimization in this set of compounds.

RESULTS AND DISCUSSION

The best equation observed in this QSAR study is:

$$\log 1/C = 0.31(\pm 0.02)I_{x} + 0.33(\pm 0.01)I_{z} + 0.49(\pm 0.02)F_{R1} + 0.26(\pm 0.02)B4_{R1} - 0.49(\pm 0.02)B4_{R1} -$$

n = 61 R² = 0.98 s = 0.03 F = 471.69;
$$P < 0.001$$

For the observation of the predictive power of the developed QSAR model, predicted log 1/C values of some additional analog compounds (**62–68**) were also calculated by using the correlation Eqn. 2 and compared with the observed values (Table 3). Calculated q^2 and S_{press}/SSY values determine that the predictive power of this QSAR model is significant (Wold, 1991) as given below:

$$q^2$$
= 0.67; S_{press} = 0.65; S_{press}/SSY =
0.22 < 0.4

Predictions for the lead optimization in this set of compounds can be concluded as follows.

Due to the activity contribution of every positive 0.3 value of regression coefficients of the structural indicator parameters Ix, Iz and IR₂ in the developed QSAR model, Eqn. 2 increases the antifungal activity as two fold improved potency. Holding a pyridine ring in the bicyclic system was found important for the heterocyclic fused system, providing two fold improved potency against *C. albicans*. Moreover, substituting position Z with a methylene group as a bridge element between the fused heterocyclic ring system and phenyl ring in this set of molecules also offered two-fold higher potency for the antifungal activity. However, having a nitro group at position R_2 in the bicyclic nucleus led to a nearly two-fold decrease in potency.

Figure 2. Plot of the observed and calculated C values of the growth inhibitory activity of compounds 1–61 against *C. albicans* using Eqn. 2.

On the other hand, position R_1 was found more significant than the positions R and R_2 for the screened antifungal activity. On the basis of Eqn. 2, electronic and steric properties of the substituents on position R_1 were found to be more indicative than the hydrophobic effects. The developed QSAR model revealed that substituting position R_1 with a group possessing a positive field effect (F), concerning minimum length (L) and maximum width (B4), increases the antifungal activity. Consequently, the interpretation of numerical values of weights of these physicochemical descriptors obtained in Eqn. 2 indicates that substituting position R_1 with such groups as NH_3^+ (F = 0.94, L = 2.93, B4 = 1.84) or NO₂ (F = 0.67, L = 3.44, B4 = 2.44) instead of CH₃ (F = -0.04, L = 3.00, B4 = 1.90), Cl (F = 0.41, L = 3.52, B4 = 1.80), Br (F = 0.44, L = 3.83, B4 =1.95), $COOCH_3$ (F = 0.33, L = 4.85, B4 = 3.36), NH₂ (F = 0.02, L = 2.93, B4 = 1.84), CN (F = 0.51, L = 4.23, B4 = 1.60) and/or H (*F* = 0.00, L = 2.06, B4 = 1.00), enhances the antifungal activity against the screened microorganism.

REFERENCES

- 1. Hansch, C. & Fujita, T. (1964) J. Am. Chem. 86, 1616.
- 2. Hansch, C. & Fujita, T. (1969) Acc. Chem. Rev. 2, 232.
- 3. Hansch, C. & Leo, A. (1979) Substituent Constant for Correlation Analysis in Chemistry and Biology. John Wiley & Sons, New York.
- 4. Meyers, F.H., Jawetz, E. & Goldfien, A. (1976) *Review of Medical Pharmacology*. Lange Medical Pub., California.
- 5. Mrozek, A., Trzezwinska, H., Karolak-Wojciechowska, J., Yalcin, I. & Tener, E. (1999) *Polish J. Chem.* 73, 625-633.
- 6. Oren, I. (1995) *The synthesis, structure elucidation and quantitative structure-activity relationship analysis of some novel antimicrobial active isosteric heterocyclic compounds.* Ph.D. Thesis, University of Ankara.
- 7. Oren, I., Temiz, O., Yalcin, I., Sener, A. & Altanlar, N. (1998) *Eur. J. Pharm. Sci.* 7, 153-160. <u>MEDLINE</u>
- 8. Wold, S. (1991) Quant. Struct.-Act. Relat. 10, 191.
- 9. Yalcin, I., Oren, I., Sener, E., Akin, A. & Ucartuerk, N. (1992) Eur. J. Med. Chem. 27, 401-406.
- 10. Yalcin, I., Sener, E., Ozden, T., Ozden, S. & Akin, A. (1990) Eur. J. Med Chem. 25, 705-708.