

Ox. step	Pr	imary	Secondary	Tertiary	Quaterna
-4	CH4	0			0
-3		RCH ₃			0
-2	CH ₃ OH		R ₂ CH ₂		0
-1		RCH ₂ OH		R ₃ CH	0
0	CH,O		R ₂ CHOH	In the second	R₄C
+1	0	RCHO		R ₃ COH	0
+2	нсоон	0	R ₂ CO	Long Street	0
+3	0	RCOOH		and the second	0
+4	(CO ₂	0			0
The oxidatio of electrons, to be reduc atoms can be values for th	n number of a it is considere ed by -n value e calculated by e 4 bonds of th	free element d to be oxidiz . In organic r considering e e "C" atoms.	is always 0. If an ed by +n value, an nolecules, the ox ach "H", -1; each '	element loses nd if it gains, it idation numbe "C", 0; each he	the <i>n</i> number t is considered ers of the "C eteroatoms, +

			1		
2	HNO ₃	SO3	Cl ₂	Ag ₂ O	MnO ₂
3	RO-NO	(CH ₃) ₂ S ⁺ -O ⁻	Br ₂	HgO	MnO ₄ -
202	Ø-N ₂	SeO ₂	12	Hg(OAc) ₂	CrO ₃
BuO-OH	H ₂ NCI		NBS	Pb(OAc) ₄	CrO ₂ Cl ₂
R-COO-OH	H ₃ N+-OSO ₃ -		t-BuOCI	FeCl ₃	OsO4
	R ₃ N+-O			Fe(CN) ₆ -3	104

